AD-A138 027

UNCLASSIFIED

.

ADA1: AN ADA SUBSET COMPILER FOR THE AFIT SYNTAX
DIRECTED PROGRAMMING ENV..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. M L MCCRACKEN
05 DEC B3 AFIT/GCS/MA/83D-4

—A

R L

‘

L 28 f2s

"m———"‘-——l 0 u K2 ulz'z

= w)

o

m" AR
—

.8

=

2

—J =y 11

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF SIANDARDS 19631 A

T X "-.I

@ ome FILE COPY

ADA138027

ADAIL
AN ADA SUBSET COMPILER FOR THE
AFIT SYNTAX DIRECTED PROGRAMMING
ENVIRONMENT

THESIS

AFIT/GCS/MA/83D~4 Michael L. McCracken
Capt. USAF

DTIC

ELECTE
FEB 2 1 1984

k&

DEPARTMENT OF THE AIR FORCE D
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

e | 84 02 17 062
Approved fox public release; _

y

AFIT/GCS/MA/83D-4

e ———————p

Accession For

NTIS C(RA&I
DTIC TaAB
Unormsunced 7
Justiricattion __

-) 2 ——
_Distribution/ o
Availability Codes
— Avail and/or
Dist Special

7.
a0

ADAl
AN ADA SUBSET COMPILER FOR THE
AFIT SYNTAX DIRECTED PROGRAMMING
ENVIRONMENT

THESIS

AFIT/GCS/MA/83D-4 Michael L. McCracken
Capt. USAF

Approved for public release; distribution unlimited.

DTIC

ELECT =P
FEB21 1984

U

Iy

i

¥

oy
i

S

D

' AFIT/GCS/MA/83D-4

ADA1l
AN ADA SUBSET COMPILER FOR THE AFIT

SYNTAX DIRECTED PROGRAMMING ENVIRONMENT

THESIS
PRESENTED TO THE FACULTY OF THE SCHOOL OF ENGINEERING
OF THE AIR FORCE INSTITUTE OF TECHNOLOGY
IN PARTIAL FULFILLMENT OF THE

‘ REQUIREMENTS FOR THE DEGREE OF
{ MASTERS OF SCIENCE IN COMPUTER SYSTEMS

by

g 5 Michael L. McCracken
: : Capt. USAF

Graduate Computer Science

S December 1983

distribution unlimited.

Approved for public release;

» \r__.§

e .

et e g -

Preface

I came to AFIT interested 1in compiler writing and
programming languages. This thesis effort allowed me to
combine those interests into a very interesting and
self-satisfying project, a compiler and interpreter for a
subset of the Ada programming.

I would 1like to thank Maj. Roie Black for proposing
this project to me and introducing me to the Ada
programming language. I would also 1like to thank my
advisor, Capt. Pat Lawlis, for all her help and guidance
during this effort.

Finally 1 must thank my loving wife for her patience
and support ‘and my children for just being children and

making me laugh. Without their support and 1love this

project might not have been completed.

Table of Contents

1. INTRODUCTION . &+ o « o o o o s o a o« e o o o s o o = 1

1.1 Prinary Objective e e e e e o o 1

: 1.1.1 Secondary Objectlves e o o o o o 2

i 1.2 Background of the Ada0 Compiler 3
] 1.3 Overview of the Thesis « « . . . 3
2. ADA . . . ¢ e o e o s s s e s s s s e s e o = o s 5

' 2.1 Background of Ada 5

| 2.2 Goals of Ada « « « o & 6

2.3 Features of Ada 7

2.3.1 Packages 7

2.3.2 Overloading e e . 9
2.3.3 Tasks +« ¢« ¢« o« o &+ & « o s 10
2.3.4 Separate Compilation e e e 11
2.3.5 Universality and Standardization 12
2.4 Scope of the Thesis . . . « ¢« « o « & 13
y 2.4.1 Features Implemented ., . . . 14
. 2.4.2 Features Designed 16
2.4.3 Features not Included in the Subse
lem

: s with the Ada Grammar
L 2.6 Simplifications to the Adal Grammar .

: - 2.6.1 A Single Unconditional Term .
2.6.2 A Single Alternative
2.6.3 An Alternation Alternative .

e o o o o Lo o o O v s s s s e

* ¢ o s o (T e s o e s e s s s e s
-
[]

¢ o o o o (B o o o

i 3. TOOLS IN THE SUPPORT ENVIRONMENT « « . . 30

3.1 The Syntax directed Editor « . . . 30
3.1.1 Using the Syntax Directed Editor . 31
3.1.2 Advantages of a Syntax Directed

Editor . ¢« ¢ ¢ ¢ ¢ o o o o o o o o 33 1
3.1.3 Disadvantages of a Syntax Directed

EBditor . ¢« « ¢« ¢ ¢ ¢ o o o o o .
3.2 The Compiler ¢« ¢ ¢« ¢« ¢ ¢ o =«
3.2.1 Incremental Compilation . . .
3.2.2 Error Detection and Recovery

The Interpreter . . ¢« . ¢« ¢« ¢ ¢« o« &
A Debugging Tool . .
The Program Lister .
The Code Lister . .

e o o o o e o
e o o & o e o o
W
~

U W

wWiwww

3 . . © . . .
- 3 - . . - .
.

4. THE ADAL COMPILER . . . &« ¢ ¢ o o o o 5 o o ¢ « « « 41

: 4.1 Program Tree Walk .« « ¢ ¢ ¢« « o o« o o o« « « 42

' 4.1.1 Concatenation Nodes « . . « 42

£ 4.1.2 Alternation Nodes . . . « . « « « - 44

. 4.1.3 Simple Non-terminals 44

! R : 4.1.4 Compilation in Pieces 45
. 4.2 Error Handling . . « « ¢ « o o o« o o o o« o » 46

. 4.2.1 Error RECOVEIY . « « « « o« o o o o 46

iii

— .. i 2 LS A BEY e

[

.

[

——— et i+

. ke . . .

i,

5 -y

6.

> >
L] .
[+)) Ul

DESIGN

5.1

5.2

5.3

Table of Contents

Symbol Table . . . e e e e o =
4.3.1 Symbol Table Structure
4.3.2 Symbol Table Routines .

Code Generation . . « « « o o =
The Interpreter
4.5.1 Modifications to the Interpret
Current Implementation and Extensions
4.6.1 Boolean Operators . . .
4.6.2 Integer Operators . . .
4.6.3 Subprograms
4.6.4 Data Types . . « . . .
4.6.5 Other Modifications . .

OF THE NEW TOOLS « . . .

The Semantic Analyzer . . .
S.1.1 The Basic Algorithm
5.1.2 Data Structures . .

Parameter Passing
5.2.1 Parameter Modes

Parameters to Functions

Parameters to Procedures

uctures e o s s s e e o

2
3
4
5 Proposed Solutions . .
tr
1 User Data Types
2

ULTIMATE GOALS AND ENVIRONMENT

6.1
6.2
6.3

Incremental Compilation
Multitasked Environment
Semantic Specification

RECOMMENDATIONS . . . ¢ o &« & o « o « &

7.1
7.2
7.3

Ada Subset Expansion .
Rewrite Tools into Ada
Support Environment .
7.3.1 Code Lister .
Code Optimizer
Online Help Tools
Program Converters
Interpreter
Program Lister . .
Debugging Tools . .

WWwWwwww
N WwN

.
.
.
.
.
.

SNNNNNS

vi

Data Structures as Paramet

-

With and Use Data Structur

.

e
es

* 6 ® ® ® e & s & o

¢ ¢ o o o s Do o o o o

* e o & o 8 & & o s

et

B

AN SR

&
)~‘v
A
:
¥
»
«
w
£
4
R
.

BIBLIOGRAPHY .

APPENDIX
APPENDIX

APPENDIX

APPENDIX
APPENDIX
APPENDIX
APPENDIX

VITA . .

A:

B:

C:

Table of Contents

META DEFINITION OF ADAl
OUTPUT OF THE META PROGRAM

DESIGN FOR PASSING PARAMETERS TO

SUBPROGRAMS . .

DESIGN FOR THE SEMANTIC ANALYZER

SYSTEM USERS MANUAL .

CODE FOR THE PROJECT

DESIGN DIAGRAMS

-

92

94
100

104
106
109
115
199
206

_k-*‘ Rl RN I T “ o brova

List of Figures

Figure 2-1 A Sample Package Declaration 8
Figure 2-2 Ada Name Production. . « . o « « « « « « « « 24
Figure 2-3 Decimal Number Productions . . « « « 26
Figure 2-4 Designator Productions« o 27
Figure 2-5 Simplification of an Alternatlon Alternatlve 28
Figure 2-6 Primary and Boolean Value Productions. . . . 29
Figure 4-1 Function Body Syntax . . « « ¢« o « « « « +» « 43
Figure 4-2 Function Body Accepting Procedure. 43
Figure S5-1 User Data TYPE . « « « s « s o« « o o« o« « « « 16
Figure 5-2 With and Use Data Structures « . . . 79
Figure G-1 Semantic Analyzer +. « « « &« « « « . 199
Figure G-2 Expression Analyzer « « « « . . 200
Figure C-3 Operator AnalyzZer ¢« ¢« « « & « « « . 201
Figure G-4 Unary Operator Anaylzer . . . « « « « o « « 202
Figure G-5 Binary Operator Analyzer « « « « . . 203
Figure G-6 Procedure Call Analyzer 204
b Figure G-7 Function Call Analyzer 205

R e

ST S
L 2

Abstract
'

This document describes the effort involved in moving
the Ada0 compiler and interpreter developed by Capt. Scott
E. Ferguson as part of the AFIT syntax directed editor
environment from a microcomputer to the VAX 11/780.

As part of this effort the compiler and interpreter
were expanded to accept a larger suset of Ada. The
compiler and interpreter work with an abstract syntax
representation of a computer program produced by the syntax

directed editor. This abstract representation, which is

guaranteed to be syntactically correct, makes the compiler

much easier to write and understand. The compiler in a
top~down compiler but no backtracking is needed since the
program is known to be syntactically correct. The
interpreter is able to use the abstract representation to
give the user an interactive display of the program during
execution.

Designs to allow overloading of names and operators,

and passing parameters to subprograms are also presented.

Y e R

INTRODUCTION

1.0 INTRODUCTION

Ada is the new computer programming language
developed by the Department of Defense. Motivated by
desires for increased productivity and 1lower costs,
requirements for a programming support environment were
also developed (Ref 8). This thesis is one of a pair in a
continuing effort to develop such an environment. This
effort 1is based on a prototype environment developed by
Capt Scott Ferguson (Ref 9). His effort 1is centered
around a syntax directed editor which creates an abstract
syntax representation of a program which the othet tools
in the support environment work with. This effort
continues the development of the compiler and interpreter

within this environment.

1.1 PRIMARY OBJECTIVE

The principle objective of this thesis effort was to
continue the development of the AFIT Ada programming
support environment originally developed by Scott E.
Ferguson. This involved an analysis of the Ada
programming language and the work done by Ferguson. This
was done with the intent of moving the support environment
from the microprocessor it was developed on to the VAX

11/780 and expanding the subset of Ada that it would

accept and compile.

.

INTRODUCTION

Since the s.pp.r' env.ronment included several basic
tools, the eft.r* was 3Jivided 1nto two separate but
related thes.s etf - *». The basic tools included in the
original system are 4 syntax directed editor, a program
lister, a compliler code generator, and an interpreter to
run the compiled program. This document describes the
effort involved in getting the code generator and
interpreter tools of the support environment we¢ .ng on
the VAX 11/780 and the expansion of the Ada st =2t the
compller would accept. Also included 1is brief
discussion of the other tools in the support env. ounment

and how they interface with the compiler.

1.1.1 SECONDARY OBJECTIVES

The main secondary objective was to enlarge the
subset of Ada the compiler would accept. The features to
be added are new data types, functions and some new
statement forms. Since the original effort was named the
Ada0 compiler by Ferguson, this effort was called the Adal
compiler.

The other secondary objective was to design
algorithms and data étructures to support a later
implementation of overloading of names and operators,
parameters for functions and procedures, packages, and

user defined data types into the expanded Adal compiler.

This objective was left as designing the algorithms and

c ‘““”“'ﬁ»,‘;.",m‘ RN

INTRODUCTION

data structures since many problems had to be solved
before any of the algorithms could be implemented. Time
restrictions placed on the thesis effort rather than

complexity of the algorithms was the main consideration.

1.2 BACKGROUND OF THE ADAO COMPILER

The current Ada0 compiler accepts only a small subset
of the full Ada language. Included in this subset are
integer variables, parameterless procedures, integer
arithmetic, Boolean expressions involving integer
relations, and many of the statement forms of Ada. The
statement. forms included are assignment, procedure calls,
if statement and while 1loops. The Boolean expressions
included are integer comparisons and the Boolean operators

and, or , and not.

1.3 OVERVIEW OF THE THESIS

To be able to properly discuss improvements to the
Ada0 compiler and support environment a discussion of the
features of Ada itself is required. Chapter 2 provides
this discussion and a short discussion of the Adal subset.
Chapter 3 1is a discussion of the support environment and
the tools as currently implemented. These tools include a
syntax directed editor, a program lister, the compiler,

and an interpreter/run time mechanism. Chapter 4 provides

o ————— . ———_ . C e e PR Cr m—— —

e .h—v!’&“@,!j‘ 5,‘ S S

INTRODUCTION

a more detailed discussion of the current Adal compiler
and how the extensions were implemented. Chapter 5
provides the details of the designs done for this thesis
effort. These include a semantic analyzer to handle the
resolution of overloaded names and operators, a way to
handle passing of parameters that will allow in and out
parameters and not be 1limited to simple types, and the
data structures to implement user defined data types and
allow for package elaboration and inclusion. Chapter 6
describes the wultimate goals and environment of the Ada
compiler. Chapter 7 1is a discussion of my conclusions

from this thesis effort and my recommendations for future

work.

_

ADA

2.1 BACKGROUND OF ADA

Ada is the new computer programming language
developed for the Department of Defense. The driving
force behind its development is the the rapidly increasing
cost of software, both new and modified. These increasing
costs are further amplified by the fact that many
different and incompatible computers are used within the
Department of Defense. These differing computers have led
to the use of a plethora of special purpose languages to
program them.

This causes problems in training since a programmer
may need to learn a new language or system when he changes
jobs. This also causes the programmer to be less
efficient until he comes up to speed under the new system.
In fact if the languages are different enough the
programmer may have to begin almost at square one.

This also means that a routine developed for one
system must be rewritten, if it is needed on a different
system. Even programs written in high level languages,
like FORTRAN, can require changes to work on different
computers. These changes can be quite extensive even if
both computers have FORTRAN compilers. A standardized
language and working environment, as Ada is intended to
provide, could help to reduce or even eliminate these

problems. One study estimates the savings to be in excess

of one billion dollars per year (Ref 10).

For these reasons and others that will be brought out

later, the Department of Defense developed criteria for a
standard and universal language. The search for this new
language began with existing computer languages. Several
of the more popular languages were examined and each was
found to be deficient in one respect or another. Since no
existing 1language could be used, the Department of Defense
held a four contractor competitive design effort to
develop the new language. This competition resulted in

the development of Ada.

2.2 GOALS OF ADA

The main goal of Ada 1is to help reduce the costs
involved in writing and modifying software. This goal is
to be attained in two separate but interacting ways. The
first is through the use of a standard language that has
many features to aid the programmer. The other is through
a standardized working environment. The requirements for
this environment are 1laid out in "STONEMAN, Requirements
for Ada Programming Support Environments" Feb 1980. The
purpose stated for the support environment is to "support
the development and maintenance of Ada applications
software through its 1life cycle®™ (Ref 8). The syntax
directed editor mentioned earlier could be one of these

tools.

ey iRl S NS ' VeI

ADA

2.3 FEATURES OF ADA

The syntax directed environment will help make Ada
more popular among computer programmers but the many
features of the language will do more to stimulate its

use. Ada has many interesting features several of which

should be discussed. These features are packages,
overloading, tasks, separate compilation, and
universality.

2.3.1 PACKAGES

Packages are one of the more interesting features
included in Ada. They are one form of Ada program units.
Their intent is to allow the specification of groups of
logically related entities. Packages are allowed to
contain their own data structures and types, and the
subroutines to manipulate them. The pieces of a package
can be visible to an outside program, invisible to it, or
a combination of the two.

Their intent 1is to allow another programmer to use
the data structures and types, and the manipulating
routines declared in the package without knowing or caring
how they are implemented. Keeping the structure of a data

type invisible to the programmer, even though the type

itself 1is visible, 1is intended to prevent the programmer

from directly manipulating the data which can create

ADA

problems for other routines in the package.

One Dbenefit of this 1is a programmer can write and
compile the package once and make it available for use by
other unrelated programs. After the package is written,
its users need not care how the data 1is stored or
manipulated but only that the results obtained from the
package are correct. Since a user does not care how a
package is implemented, the package body can be changed
and if done properly the change will not affect any of the

programs using the package.

package complex_arithmetic is
type complex number is private;
function "+"(A,B : complex_ number)
return complex number;
function "-"(A,B : complex_number)
return complex number;
function create_complex(R,I : integer)
return complex_number;
private
type complex_number is
record
real _part : integer;
complex_part : integer;
end record;

end complex:;
Figure 2-1. Sample Package Declaration

An example 1is a package to do arithmetic on complex
numbers. The data type used for the complex numbers could

be a record, an array, or even a linked list. This type

R TR
4 ADA

could be changed from one to the other without any affect,
except possibly execution speed, being seen by any user.
A sample package is declaration is shown in figure 2-1.
This interface of the package is all the user needs
to see and know about the package. Declaring the type
complex number as private means the user can declare
variables to be of type complex but must use the functions
provided to manipulate them. The user is allowed to do
assignment and membership tests (Ref 6: 7-6). This

. package exhibits another feature of Ada, overloading.

$i 2.3.2 OVERLOADING

Overloading of names and operators another feature of

interest included in Ada. Overloading, as defined by the

———— -

Ada standard, 1is a relatively new concept. Unlike Pascal

and other block structured languages which hide previous
declarations of a name when the name is redeclared, a
redeclaration of a name in Ada only hides previous
declarations of the name which are of the same type. The
idea is to allow one name or symbol to have several
different meanings depending on the context of its use.
3 To be valid the context must make the use unambiguous. If
two or more meanings are consistent with the context then
the use is erroneous and must be modified in some way.
. In the previous example the operators "+" and "~-" are

1 overloaded to allow their wuse with complex_numbers. An

overloaded operator can be used in the usual manner. For
example the following code fragment will cause two
complex numbers to be added using the "+" operator and the
result assigned to another complex number.

a,b,c : complex number;

a :=b + c;
The idea is to make programs more readable and
understandable for other programmers. In other languages
the addition of two complex numbers would have to be done
using a function or procedure with a name like
' complex addition. This would make the program readable
e but some programmers would shorten the name to someless

meaningful mnemonic like comp_add.

The designers' of Ada felt that the "+" operator

could have meanings other than standard addition with

R e S S S U

respect to non-standard types and that it should be
allowed to express that meaning. Tﬁey also allow a user
to overload and hide the standard meaning of these
operators if they wish to define their own functions to do

addition.

2.3.3 TASKS

Tasks are the next feature of interest included in
Ada. Since Ada is intended to be used mainly in the area
, of embedded computers by the Department of Defense, this

feature is very important. These embedded computer

. m— —-—

il SN - TR

ADA

systems usually require several functions or processes to
be performed simultaneously. Tasks allow the programmer
to define several processes and allow them to execute in
parallel either on a single processor or on multiple
processors.

Tasks are allowed to communicate or synchronize
through the rendezvous feature. Since tasking can be
implemented in several different ways the Ada standard
says that any program that depends on the implementation
is erroneous.

An interesting feature of tasks is that they can be
defined as a type and used in data declarations. This
allows the user to define arrays of tasks, records that
contain tasks, or any other legal use of a data type. The
task type is limited so assignment and predefined
comparison are not allowed. Examples of tasks can be

found in the Ada Reference Manual (Ref 7: 9-20).

2.3.4 SEPARATE COMPILATION

Separate compilation is another feature of interest.
Separate compilation is a term that has been misused in
the past. Many languages have claimed to allow separate
compilation when what they truly did was independent

compilation. The difference lies in the semantic checking

that is done.

ADA

Independent compilation allows a function or

procedure to be compiled independently of the rest of the
program. The idea was to allow a function or procedure to
be used by several different programs and eliminate the
need for each to compile the common parts. Though this
saves time, it causes other problems since a using program
can misuse an external function and still compile
correctly. The error generated on execution may show no
relation to that misuse and cause the programmer to waste
valuable time debugging the problem.

Separate compilation requires that all semantic
checks be done as if the separate pieces were all compiled
together as one unit. This requires the compiler to have

the specifications of those pieces available when they are

.t —wa-

needed. This difference is pointed out quite nicely in the

preliminary reference manual (Ref 7: 10-1).

2.3.5 UNIVERSALITY AND STANDARDIZATION

Universality is the final feature and perhaps the one
with the most promise for helping reduce the costs of
software. This feature is being enforced by the
Department of Defense. Any Ada compiler must pass a
series of validation tests to ensure it is neither a
subset compiler nor a superset compiler. Only after it
passes these tests is it allowed to be called an Ada

compiler. An exception to this is allowed for any subset

12

ADA

compiler that 1is still in the development stage and
eventually will become a full Ada compiler.

This standardization should help reduce the
retraining problem encountered when a orogrammer changes
jobs. Since it is intended that most tools in use in the
Ada support environment be written in Ada, they will be
fully transportable. This will further reduce the
retraining problem.

Another benefit of standardization is the incentive
it gives programmers to write wuseful programs and
packages, since the potential market is much larger than
for a similar program written for one machine or family of
machines. Hopefully this will 1lead to the emergence of
large software houses and catalogs from which a programmer
can order the packages and subprograms needed to do a
project. The packages and subprograms can then be
compiled with new code to produce a new pr c.am much more

quickly.

2.4 SCOPE OF THE THESIS

This section outlines the scope of the thesis effort.
The scope can be broken into three parts, the features of
Ada that were implemented, the features of Ada that
designs were done for, and the features of Ada that were
ignored for this thesis effort. Since Ada is such a large

language and time was limited a workable subset of the it

13

ADA

had to be <chosen and some of the features had to be left

out.

2.4.1 FEATURES IMPLEMENTED

The features of Ada implemented in the Adal compiler
included the Ada0 subset, new data types, functions, the
remaining operators, and some of the remaining statement

forms. These features are explained in more detail below.

2.4.1.1 FEATURES OF THE ADAQ SUBSET

The first things to be included in the Adal subset
were any features already implemented through the Ada0
subset. Since this thesis effort 1is based on the Adao0
compiler, developed by Scott Ferguson, all features of it
were included. The code from the Adal0 compiler required

some modification to work for the expanded Adal subset.

2.4.1.2 DATA TYPES

The next feature added to the Adal subset was two new
data types, booleans and characters. These were added
since the Ada0 subset was integer only. Unfortunately,
the addition of new data types required most of the code
written for the Ada0 compiler to be modified. The
modifications to the code were made to allow the compiler

to do type checking and report typing errors.

14

ADA

2.4.1.3 FUNCTIONS AND PROCEDURES

The next feature added to the Adal subset was
functions. The Ada0 subset allowed only procedures.
Since a function is essentially a procedure that returns a

value functions were easy to include.

2.4.1.4 NEW OPERATORS

The Ada0 subset left out some of the operators
defined in the Ada grammar. These operators are included
in the Adal subset. The new operators are the boolean
operators, and then, or else, and xor, and the integer

operators rem, mod, abs, and the exponentiation operator,

* %

.

2.4.1.5 ADA STATEMENT FORMS

Most of the Ada statement and expression forms are
included. The statement forms included are the
assignment, if-then-elsif-else, iterative 1loops, while
loops, return, and null statements. The statement forms
missing from the compiler are mostly associated with

tasking. Since tasking was not implemented these could not

be included.

-

ADA

2.4.1.6 COMMENTS

Comments were the final feature added to the Adal
grammar. The comments are a 1limited subset of the Ada
comment feature. The limitation was added to make
comments easier to handle for the compiler. Ada allows
comments to occur at any point in a program. The Adal
subset 1limits comments to be used as a program header, as
a regqular statement, and to follow statements and variable
declarations. These places were thought to be the most
useful and also are the places within a program that a

user usually puts comments.

2.4.2 FEATURES DESIGNED

Designs were done to allow several of the more
interesting features of Ada to be implementew. at a later
time. These features are overloading of names and
operators, packages, user defined data types, and passing

parameters to subprograms.

2.4.2.1 OVERLOADING OF NAMES AND OPERATORS

The first design done was an algorithm *“o handle
overloading of names and operators. Several good
algorithms exist (Ref 2,14,16) to handle the problems of
operator and name identification. All that should be

needed 1is a "black box" implementation of one of them to

16

ADA

do a prewalk of the abstract syntax tree and hang the
correct types onto the various structures.

The code involved 1in such a tool is long and very
involved, even though several of the references actually
give most of the code or pseudo-code for their algorithm.
The time needed to include this tool is beyond the scope
of this thesis effort.

Also overloading is not really essential to getting a
subset in which these tools could be rewritten. The only
change to the compiler that would be needed to include
this semantic analysis tool 1is the <call to it when an
expression 1s encountered and the deletion of calls to the
symbol table routines when a name is finally found since
the type and symbol table information will already be
attached to the node. A design of the proposed semantic

analyzer is presented in chapter 5 and Appendix D.

2.4.2.2 PACKAGES

The second feature designed were data structures to
allow implementation packages. The design is presented in
chapter 5. The current implementation in no way precludes

or limits the inclusion of the design.

17

ADA

2.4.2.3 DATA TYPES

The data structures needed to allow user defined data
types were designed next. These were only designed
because the code needed to do semantic verification was
not written. Even without overloading the code to do type
verification of expressions was difficult to implement
correctly. Since a semantic analyzer will eliminate the
need for this code, 1 felt writing extra code that would
later need to be eliminated was wasteful of time and
effort. The data structures needed to implement user
defined data types were designed and are presented in

chapter 5.

2.4.2.4 PASSING PARAMETERS TO SUBPROGRAMS

The final design done was of an algorithm to allow
parameters to be passed to subprograms. The algorithm

designed is presented in chapter 5 and Appendix C.

2.4.3 FEATURES NOT INCLUDED IN THE SUBSET

Since time was 1limited certain features had to be
excluded from the subset. Several papers (Ref 5,15,17)
influenced my decisions regarding what features to
exclude. These papers pointed out problems with the Ada
grammar, problems with a feature or the fact that a

feature was extraneous to the language. One of these

18

W

ADA

papers quoted Niklaus Wirth who said

The choice of what is to be omitted from a new

language is in practice much more critical than

the choice of what 1is to be included. The

decision to omit a feature requires not only

familiarity with this feature (and knowledge of

how to 1live without it) but the courage to face

the inevitable criticism of its absence in the

new language in spite of its presence in another

existing language (Ref 15).

Interestingly this quote was taken from the Green
Reference Manual which was the original Ada design but it
was omitted from later versions of the manual. Wirth was
referring to the fact that DOD was attempting to include
too many features into Ada to be popular. He was afraid
Ada would follow the same path as PL/1 which has
esséntially died in spite of the backing given it by IBM
(Ref 17). Most of the features excluded from this subset
are features that the user can do without and in fact many

of them can be simulated using the features contained by

the language subset that was implemented.

2.4.3.1 TASKING

The first feature excluded from the subset was
tasking. Many problems with this feature are pointed out
in a technical note from the Defense Communications
Engineering Center {Ref 5). Since these problems

complicate the understanding of exactly how tasking is

19

o

ADA

supposed to work and therefore how it must be implemented,
tasking was excluded.

Another factor which helped allow the exclusion of
tasking 1is that a tasking Ada subset compiler already
existed at AFIT (Ref 11) and it could be used or rewritten
for later integration intc the syntax directed editor
environment. This rewrite would probably have taken most
of the time allotted to the development of this subset
compiler and thus the other features would not have been

implemented.

2.4.3.2 GENERIC PACKAGES

The next feature to be eliminated was generic
packages. The main reason for not implementing generic
packages was that packages themselves were not implemented
and generic packages cannot be implemented until such

time.

2.4.3.3 SEPARATE COMPILATION

The next feature eliminated was the separate
compilation of Ada sub-units. This feature only
complicates the design of the how the generated code is
stored and written out. The current design does not
preclude the insertion of code from a later compile but it

is not easily extended to allow such an insertion.

20

e I > - SR S s ST
: h””?"“!T

ADA

One method that will work 1s to denerate a jump
statement as the specification 1is compiled. When the
sub-unit body is compiled fix that statement to jump to
where the actual code 1s placed. This would allow the
code to be placed anywhere in the code array that space
permits.

One problem comes up when this type of separate
compilation is done. This is the problem of what the
symbol table 1looks 1like when the procedure should have
been encountered. The solution to this problem is not
trivial since the entire symbol table up to the point
where the specification 1is found must be saved for use
when the subunit is compiled. Due to the limitation of
time and the fact that this feature 1is not needed to 1
attain the goal of writing the tools into Ada it was not

included.

2.4.3.4 THE GOTO STATEMENT

The next feature eliminated was the goto statement.
This feature 1is not needed due to the numerous control
structures already available in Ada. Since‘Ada is such an
otherwise structured language the rationale for including
a goto statement is hard to figure out. 1Its inclusion, no
matter how structured, can only lead to misuse or very
complicated compiler restraints to ensure proper usage.

Since the arguments against the inclusion of the goto

21

ADA

outweigh any possible gain from its inclusion, the goto

was not included in the subset.

2.4.3.5 OTHER FEATURES LEFT OUT

Several other features were not implemented. Most of
these were excluded for reasons of time or not being
needed for the chosen goal. Although these features are
of interest they tend to add little to the capabilities of
the subset. These 1include private types, access types,
named parameters, and input/output of enumeration types.

The design of the compiler in no way precludes the
later inclusion of any of these features and in fact many
of the data structures used by the compiler were designed
with the excluded factors being considered. The goal
behind the design was to allow an easier extension than
the Ada0 subset compiler did. Several fields of the data
structures are not even used but were included to handle

the analysis of these features.

2.5 PROBLEMS WITH THE ADA GRAMMAR

The development of this subset and the compiler for
it also brought out several problems with the Ada grammar
as presented in the Ada reference manual (Ref 7). These
problems were mostly in areas where the Ada syntax

specification allows the use of a non-terminal with a

ADA

pre~fixed italicized modifier. The italicized modifier
creates a variety of the non-terminal, but syntactically
the modifier is ignored (Ref 7,17). For example
procedure_name and package_name are varieties of name.

Usually these qualified non-terminals are used in
such restricted situations that the italicized modifier
can be retained without causing the grammar to become
ambiguous. Since the non-terminal can be restricted in
this way, the Adal subset incorporated these restrictions.

Incorporating these restrictions into the Adal subset
accomplished two things. First, it simplified the user's
job when writing a program with the syntax directed editor
This 1is because some choices that would otherwise be
available to the user are eliminated. This also
eliminates the need for the compiler to do some of the
semantic checks that would be necessary if the
restrictions were not 1incorporated. This is because the
restrictions eliminate choices that would be syntactically
correct but semantically incorrect.

For example, in the full Ada grammar procedure_name
is interpreted simply as name. The legal choices for name
are shown in figure 2-2. Of these choices only identifier
is semantically correct. Thus in the Adal grammar
procedure_name was replaced with identifier (see Appendix
A). This greatly simplifies not only the user's job when

entering programs but also the compiler since the illegal

! ADA

choices need not be considered.

name ::= identifier
indexed_component
selected_component
function_call
slice
attribute
operator_symbol

Figure 2~2 Ada Name Production

Most of the other problems with the grammar are
resolved by the wuser as he walks through the parse and
chooses the type of production or construct he wants to
use next. This means the compiler always knows what it is

working on and does not need to do any backtracking.

: 2.6 SIMPLIFICATIONS TO THE ADAl GRAMMAR

After the Adal grammar was developed, it was input to
the META program (Ref 9). The META program is used to
convert a grammar from its external, English form go an
internal representation that the syntax directed editor
and the other tools can use.

META does some checking of the input grammar. It
ensures that the grammar is complete in the sense that no
undefined non-terminals exist. It also checks to see if
the grammar could be simplified by either eliminating
unused productions or by combining two or more productions

into a single production.

24

ADA

Unused productions are automatically eliminated.
Unfortunately they are not tagged as such in anyway. Only
a thorough analysis of the output from META would reveal
those productions which were eliminated. A production is
unused if its non-terminal is not used on the right-hand
side of any other production. There is one exception to
this rule. That is the first production in the grammar.
This production is considered to be the goal or start
symbol for the grammar and as such does not have to appear
on the right side of a production.

META also points out several potential
simplifications to the 1iuput grammar. These are pointed
out as a single unconditional term, a single alternative,
and an alternation alternative. Each of these potential
simplifications 1is the result of the subset nature of the

Adal grammar, and the causes are explained below.

2.6.1 A SINGLE UNCONDITIONAL TERM

The first potential simplification that META points
out is a single unconditional term. This is a
non~terminal that 1is replaced by a single terminal or
non~-terminal. For example A ::= B;. META is suggesting
the grammar could be simplified by eliminating the
production and replacing all occurences of the
non-terminal A with B.

Several productions of this form appear in the Adal

25

ar

ADA

grammar. These productions are due to the way the Adal
subset was developed. These productions are actually
concatenations or alternations in the full Ada grammar. A
decision was made to leave the subset as is since this
makes future expansion of the subset and the compiler
easier and it does not make the syntax directed editor any
more difficult to use.

An example of a production of this type in the Adal
grammar 1is the production for decimal_number shown in

figure 2-3.

Adal

"

decimal_number integer ;

Full Ada

decimal number

[exponent] ;

i

integer [decimal_part]

Figure 2-3 Decimal number

2.6.2 A SINGLE ALTERNATIVE

The second potential simplification pointed out by
META 1is a single alternative. This 1is similar to the
single unconditional term except that the production
involved 1is an alternation rather than a concatenation.
For example B = < C > ;. By peinting this out META is

suggesting the grammar could be made simpler by making

26

ADA

this production 1into a concatenation as B = C ; or by
replacing all occurences of B with C and eliminating this
production.

Several productions of this form appear in the Adal
subset. These productions are again a result of the way
the Adal subset was developed. These productions are
actually multi-alternatives in the full Ada grammar.
Since simplifying the grammar does not make the user's job
any easier, the grammar was left unsimplified. This also
makes expansion of the subset grammar and the compiler
easier.

An example production of this ¢type in the Adal
grammar 1is the production for a designator, shown in

figure 2-4. I

Adal

designator < identifier > ;

Full Ada

< identifier
op_symbol > ;

designator

Figure 2-4 Designator Productions

27

ADA

2.6.3 AN ALTERNATION ALTERNATIVE

The third potential simplification that META points
out 1is an alternation alternative. This results when a
choice of an alternation 1is an alternation in its own
right. An example is shown in figure 2-5a. META is
suggesting that these two productions can be combined and
the grammar simplified as shown in figure 2-5b. 1If the
non~terminal C only appears in other alternations it can
be eliminated from the grammar since after the
combinations are done it will not appear on the right hand

side of any production.

(a)
A= B
| €
C= D
{ E ;
(b)
A= B
D
E ;
CcC = 1D
| E ;

Figure 2-5 Simplification of an Alternation Alternative

Several productions of this form appear in the Adal
grammar. These do not result from the way the Adal subset

was developed but are actually caused by the Ada grammar

28

1

r-.

ADA

itself and the way the productions must be formed for
input to META. In this case simplifying the grammar
probably would not make expansion of the subset grammar or
the compiler any more difficult, but in most cases the
simplification does not result in any true simplification
since no productions are eliminated. Doing the
simplifications can make the user's job somewhat more
difficult since he must choose from a larger list of
alternatives when a choice must be made.

The Adal grammar was left wunsimplified to avoid
potentially overloading the user with too many choices at
any one time. Another factor that influenced this
decision 1is that 1in some cases the extra information
gained through the exXtra decision was very useful in the
semantic analysis and code generation for a program.

An example of this type of production in the Adal
grammar is the productions for primary and boolean_value

and is shown in figure 2-6.

primary = < decimal number
name
nested_exp
char 1lit
boolean_value
func_call > ;

boolean_value = < "true"
"false" >

Figure 2-6 Primary and Boolean Value Productions

29

PRSI P

TOOLS OF THE SUPPORT ENVIRONMENT

3. TOOLS IN THE SUPPORT ENVIRONMENT

The tools of the support environment work together to
accomplish a common goal. This goal is to simplify the
program development process for the programmer. To do
this efficiently the tools must communicate with each
other. Since the tools work independently, the
communication 1is done through a common data structure that
is retained throughout the development cycle. This data
structure 1is the abstract syntax tree representation of
the program that the syntax directed editor creates as the
program is entered.

This abstract representation of the program is used
or manipulated by each of the tools in the support
environment. The tools currently implemented are a syntax
directed editor, a compiler, an interpreter/debugger and a
program lister. Many other tools can be written to use
the abstract representation of the program. These tools
include code optimizers, 2ross reference routines,
semantic analyzers, and execution analyzers. The nature
of these tools is 1limited only by the imagination and

skill of a user or group of users.

3.1 SYNTAX DIRECTED EDITOR

The syntax directed editor 1is the first tool

encountered by a programmer. The syntax directed editor

30

TOOLS OF THE SUPPORT ENVIRONMENT

is used to enter a program into the environment. In this
sense a syntax directed editor is a text editor. It
differs from a standard text editor in its use and
ultimate goal. A standard text editor allows the user to
enter any text desired. The output of a standard text
editor is the text that was entered. A syntax directed
editor allows the user to enter text that is limited by
the syntax or grammar of the language the prc¢Jram is
written in. The output of the syntax directed editor is a
syntactically correct program that the other tools can
work with.

The syntax directed editor is not part of this thesis
effort. It 1is an 1integral part of the programming
environment and is used to create the abstract syntax tree
the other toecls of the environment use. Its use 1is
necessary to be able to use the compiler and interpreter
being implemented for this thesis effort. The syntax
directed editor was originally developed by Scott E.
Ferguson (Ref 9) and was moved to the VAX 11/780 by John

Koslow.

3.1.1 USING THE SYNTAX DIRECTED EDITOR

To wuse the syntax directed editor the programmer must
tell it the name for the new program and what language the
program 1is to be written in. The syntax directed editor

then creates a template of the syntactically legal

51

TOOLS OF THE SUPPORT ENVIRONMENT

constructs for a program in that language. The user must
then "walk" around that template and choose the elements
to be included in the program. With each choice the
syntax directed editor replaces the object chosen with its
own template. This process of replacement continues until
the user 1is 1left with no more choices and the program is
fully written.

For example in the Adal 1language a program is a
compilation_unit. Since a compilation_unit is an
alternation the wuser must choose whether to write a
function or a procedure. After the choice is made the
syntax directed editor displays the template that was
chosen. It 1is this template that the user sees when he
starts to enter a program. Suppose a procedure_body was
chosen, the user descends the tree into the procedure_body
and must satisfy the requirements of a
procedure_specification. This 1is simply an identifier
which is entered simply by typing in the name.

This "walk"/selection process continues until the
program has been fully entered. The programmer can then
exit the syntax directed editor or call the compiler,
interpreter, or program lister. The abstract syntax tree
representation of the program 1is stored by the syntax
directed editor before an exit is allowed. A more
complete explanation of the syntax directed editor can be

found in the thesis written by Scott Ferguson (Ref 9).

32

TOOLS OF THE SUPPORT ENVIRONMENT

The use of a syntax directed editor can have several

advantages and disadvantages. These are outlined below.

3.1.2 ADVANTAGES OF A SYNTAX DIRECTED EDITOR

The use of a syntax directed editor leads to several
advantages that can help later in the program development
cycle. The first and most important advantage is the
compiler does not have to do any syntactic analysis. This
can dramatically speed up the compilation process since
the compiler does not have to recreate the syntax tree
whenever the program is recompiled. It also allows the
compiler to concentrate on other aspects of the
compilation process. These aspects include semantic
checking, error recovery, and code optimization. The
compiler essentially becomes a semantic analyzer and a
code generator.

A second advantage of the syntax directed editor is
the fact that it 1is independent of the 1language the
programmer 1is using. This means it does not have to be
rewritten for each new language a programmer wants to use.
Only the language's syntax need be created and input to
the META preprocessor described earlier. This also means
a programmer does not have to remember how many different
editors work since the same editor will be used for each

project. This has one other advantage since only one

33

TOOLS OF THE SUPPORT ENVIRONMENT

editor 1is needed less secondary storage is needed to keep
editors online.

A third advantage of a syntax directed editor is in
the more efficient use of the computer. Several aspects
of this have already been pointed out. The first is the
compiler does not have to reanalyze the program each time
it 1is recompiled. Another is that the programmer does not
have to wait for a printout to be able to go in and fix an
error. This can save not only time but other resources
such as paper or wear and tear on a printer.

Another more efficient use of the computer is
achieved by a syntax directed editor since the CPU has
functions other than waiting for a user to make inputs to
perform. Since most CPU’s can handle data much faster
than a user can enter it, the CPU tends to sit idle when
it could be doing other tasks. One of these tasks is the
creation of the wvarious syntax nodes being put to use by
the programmer.

Another task the CPU could be doing is background
compilation. The compiler or some portion of it could be
running as a background task to the syntax directed
editor. A major problem must be overcome before this is
attempted. That problem is how .(..e editor and the
compiler communicate with each other to avoid the editor
changing the program that the compiler has already

generated code for. Also the editor must ensure it does

34

e’

TOCLS OF THE SUPPORT ENVIRONMENT

not destroy a subtree the compiler is working while the
compiler 1is analyzing it. For these reasons and a lack of

time this feature was not implemented.

3.1.3 DISADVANTAGES OF A SYNTAX DIRECTED EDITOR

A syntax directed editor can have disadvantages. The
first of these 1is the user must have much more knowledge
of the grammar and syntactic structure of the language the
program 1is written 1in. This is due to the way the user
must interact with the syntax directed editor to indicate
what template to use next. This aspect will be further
discussed in the next chapter. This interaction may also
force a user to receive extra training and it may take
some users longer to learn how to properly use the new
tool.

The other main disadvantage to a syntax directed
editor 1is the syntax tree can take up to eight times more
secondary storage than its text based counter part. This
is due 1in large part to the amount of information
contained in the syntax tree that 1is not needed or
maintained by a text based system. (Ref 9). This is
becoming 1less and 1less of a problem as the cost of

hardware and secondary storage in particular decreases.

35

b

TOOLS OF THE SUPPORT ENVIRONMENT

3.2 COMPILER

The compiler 1in this environment becomes a simple
tree walking routine. It systematically walks around the
tree hanging code fragments for the node it is currently
on. The code fragments are generally hung only on the
leaf nodes of the tree.

A function 1is developed for each type of node that

b the tree might contain. This makes the compiler somewhat
easier to modify or expand since only the functions for
the productions that changed must be modified. An
exception to this occurs when a change like adding data
types to the 1language is made. All functions must be
examined to see if type checking 1is needed. One way
around this is to write a separate semantic analyzer that
pre-walks the tree hanging type and symbol table
information onto the nodes. The current implementation of

é, the compiler 1is explained in more detail in the next

chapter.

3.2.1 INCREMENTAL COMPILATION

The compiler can also use this structure to save

1 information that can be used when a program is recompiled.
If the nodes are marked to indicate a change was made that

affected that node then the compiler can reuse any

information that is associated with unchanged nodes.

e e e AT AN T s - e e — f—

TOOLS OF THE SUPPORT ENVIRONMENT

Since ADA 1s such a structured, type oriented language
this feature was not implemented. This was to ensure the
semantic correctness of the program being compiled, since
changes 1in declarations and external packages can have
unknown affects. Such changes can even affect areas of a

program that have not been changed for a long time.

3.2.2 ERROR DETECTION AND RECOVERY

Using the abstract syntax representation of the
program and knowing that the program 1is syntactically
correct makes error detection and recovery done by the
compiler much easier. Since the compiler knows at all
times what construct it is working on, no error recovery
in the usual sense is needed. All the compiler needs to
do 1is ascend the tree to a node above the error and
continue as if the subtree with the error is ok. This
allows the compiler to do more extensive error checking
during the initial compile and also helps eliminate the
usual stream of false errors that are caused while the
compiler tries to resynchronize itself.

The only limitation on this error detection is the
maximum number of errors a user wants to allow before the
compiler quits. Since error flags are stored in the
syntax tree itself or in a similar structure, the iimiting
factor 1is how much storage is available for these errors.

These error flags have pointers into the syntax tree at

37

TOOLS OF THE SUPPORT ENVIRONMENT

the node with the error. The syntax directed editor can
then be invoked and will point to the first erroneous
node. The editor can also have the error message
available which relieves the programmer from having to
wait for a printout. This will save the programmer time

and allow programs to be written and debugged faster.

3.3 INTERPRETER

The interpreter or run time mechanism can use the
information stored 1in the syntax tree to allow the input
and output of enumeration types, to do range checking, and
any other run time checks that might be desired. In many
cases these checks can be done dynamically by the
interpreter without the need for extra code being
generated by the compiler. This can save time in the
compile process and also means that it will be easier to
override these run time checks since they only need be
turned off in the interpreter and no recompilation is

needed.

3.4 A DEBUGGING TOOL

An interactive debugging tool can be used to trace
the execution of a computer program. Debugging tools
exist but they are usually limited in their capabilities.

Using information contained in the syntax tree, the

38

TOOLS OF THE SUPPORT ENVIRONMENT

debugger can show the programmer exactly what is happening
during execution. This can help pinpoint an error and
show the programmer exactly where it is. This 1is
especially helpful if the error is in the middle of a
complex statement or if the error does not cause the
program to terminate. The current implementation combines
the interpreter and debugging tools into a single tool.

This is not the only way it could be done, but due to the
simple nature of the debugging tool it was the easiest way

to get them working.

3.5 PROGRAM LISTER

A program lister uses the information stored in the
syntax tree and the syntax description file to produce
nicely formatted listings. Using other information in the
syntax tree a 1lister could be written to generate cross
reference 1listing and other wuseful outputs. If done
properly these 1listings are more detailed than the usual
listings produced by a compiler.

An added feature of this lister is that it is usually
independent of the programming language in use. This is
also true of the syntax directed editor and means that
only the compiler and grammar need to be rewritten for the
syntax directed editor to work on another programming

language.

39

T T et R S e AN W DAY 5 IS I RBONAD g - 13D o e ol

L PR

g ” N, Y et Skl SMLAT I s G
. ML} IR S-S, : .

TOOLS OF THE SUPPORT ENVIRONMENT

Like the syntax directed editor, the lister was not
directly part of this thesis effort. It is part of the
effort done by Scott Ferguson and moved to the VAX 11/780
by John Koslow. 1t was used during this thesis effort to
produce listings of the programs used to test the

compiler.

3.6 CODE LISTER

The code 1lister is a simple tool to extract the code
generated by the compiler and transform it into a readable
format. The code lister is newly implemented as part of
this thesis effort. It is dependent only on the set of
"executable" instructions being used by the compiler and
interpreter. It is the only tool of the support
environment that does not wuse the abstract syntax

representation of the program.

- o

THE ADAl1l COMPILER

4.0 THE ADAl COMPILER

The Adal compiler can be split into three interacting
but separate parts. These are the semantic analyzer, the
symbol table routines, and the c¢ode generator. The
semantic analyzer is used to hang the types onto
expressions and variables. The symbol table rcutines are
used to insert and look up names in the symbol table. The
code generator is used to produce code for the program.

These three parts work together to compile an Adal
program. The code generator 1is the controlling program
and it calls the other two as needed. The semantic
analyzer is wused to preview an Adal expression and
determine its type. This preview makes the generation of
code much easier. The symbol table routines are called by
both the code generator and the semantic analyzer as

necessary.
This chapter will discuss the implementation of the

code generator and the symbol table routines. A proposed
design for the semantic analyzer will be presented in the
next chapter.

Since no means currently exists for specifying
semantic actions in the META syntax description, the code
generator must be coded separately. Fortunately the code
generator merely needs to walk the tree building the

symbol table and generating code for the pseudo-machine.

THE ADAl1 COMPILER

4.1 PROGRAM TREE WALK

The need for a parsing step is eliminated since the
structure and syntactic correctness of the program tree is
assured. Walking the tree provides access to the
syntactic elements of the program. Since the code to walk
the tree models the syntactic structure of the language,
each non-terminal in the grammar maps into a function to
evaluate and validate its subtree. The function is passed
a single argument which is the root node of the subtree.
Thus to start the compilation process the root node of the
tree is passed to the function goal.

Since a non-terminal can be either a concatenation or

an alternation, two basic function structures are used.

4.1.1 CONCATENATION NODES

For a concatenation non-terminal, the function
consists of a series statements to analyze and validate
each child node in turn. Non-terminals are processed by
calling subroutines to analyze and validate their
subtrees. Terminal strings and sets are processed for
their value. Terminal strings present in the grammar are
not present in the abstract syntax tree so they present no
real problem. For example the syntax for a function body
is given in figure 4-1. Sample code to accept this syntax

is shown in figure 4-2.

42

THE ADAl COMPILER

func body =
~ func_spec "is"
{ decl }
{ program_component }
"begin“

seq_of_stmts
"end" [identifier] ";"

Figure 4~1 Function Body Syntax

procedure FUNC_BODY(node : tree_node);
var child : tree_node;

begin
child := first_child(node);
FUNC_SPEC(child);
child := right_sibling(child);

while (node_type(child) = "decl")
begin
DECL (child);
child := right_siblingl(child);:
end; !
while (node_type(child) = "program_component)
" begin

PROG_COMP (child) ;
child := right_sibling(child);
end;
SEQ_OF_STMTS(child);
child := right_sibling(child);
if (node_type(child) = "identifier")
old_ident(child);
end;

Figure 4-2 Function Body Accepting Procedure

Required non-terminals like func_spec and
seq_of stmts are processed by their own functions. The
decl and prog_comp repeaters are processed in while loops
for as many such nodes as exist in the func_body. The

optional identifier at the end of the func_body is

43

W

THE ADAl COMPILER

processed by an if statement. Unestablished optionals and
repeaters are ignored since the program is correct without

them.

4.1.2 ALTERNATION NODES

An alternation non-terminal is processed by a case or
switch construct. The case 1is based on the type of the
non-terminal's only child. One case 1is used for each
possible alternative. If no child exists due to an
unestablished alternative, the incomplete program fragment

is reported as an error.

4.1.3 SIMPLE NON-TERMINALS

A third type of non-terminal exists in the subset.
This 1is a non-terminal that 1is replaced by a single
non-terminal. These non~terminals are processed by a
simple call to the function that processes the second

non-terminal. For example

stmt =
simp_stmt ;

This is processed by the function

function stmt(node : tree_node) return integer;

begin
stmt := simp_stmt(son(node));
end;

THE ADAl COMPILER

This has several causes. In the above examples the
subset eliminated an optional label from the production.
The production was left as is to allow easier expansion of
the subset to the full Ada grammar. The full Ada stmt is

stmt =
{ label } simp_stmt ;

Another cause is shown in the definition of a proc_decl.

proc_decl =
proc_spec_semi ;
This 1is actually an alternation in the full Ada grammar.
Once again no reduction was made to allow for easier
expansion of the compiler. The full production is
proc_decl =
< proc_spec_semi

generic_proc_decl
generic_proc_instant > ;

4.1.4 COMPILATION IN PIECES

Since the entire tree 1is available during the
complete compilation process, it need not be accessed in a
strict linear fashion just described. It could be
compiled in pieces with each completed subtree being pass
by the editor to the appropriate subroutine for
processing. This would allow the compiler to run
background to the editor, which would improve the

effi.iency of the entire system.

45

B R it S0 ¢ TS5 gt Sy gt

ke £ b PRIV -

THE ADAl1 COMPILER

4.2 ERROR HANDLING

The syntax directed editor ensures the syntactic
correctness of the program . It is still possible for the
program to contain semantic errors. It is the compiler's
responsibility to detect and report these errors. Two
examples of semantic errors are an undeclared identifier

and an identifier of the wrong type in an expression.

4.2.1 ERROR RECOVERY

Error recovery 1s wusually a difficult process for a
compiler, since it 1s trying to check the syntax as well
as the semantics of a program. When it encounters what it
thinks is an error it must check if using a different
syntax would eliminate the error. Also the recovery
process itself may cause new errors to be detected since
the compiler must guess where to restart the compiling
process.

Due to the assured syntactic correctness of the
program, the error recovery function is all but
eliminated. Semantic errors are easy to recover from,
since they tend to only affect a relatively small part of
the entire program. The recovery process involves
patching the code that is generated, reporting the error

to the user, and marking the erroneous node. Marking the

46

-t

I P LU " T e, Y S e . e e g s -

THE ADAl COMPILER

node allows the syntax directed editor to detect it as
erroneous and move the focus to that node to allow the
programmer to make the necessary correction.

The fact that an error was encountered is also passed
back up the tree through the returns from subroutine calls
until a subroutine is found that can continue in spite of
the error. Thus error recovery 1is built right into the
functions themselves and poses no particular problems
except how to determine when an error no longer has an
affect.

For example if the symbol table is searched for an
identifier and it is not found, the error undeclared
identifier 1is generated. This error only affects the
expression 1in which the identifier is being used. The
compiler reports the error and then generates code to load

a 0 wvalue instead of the real value and processing is

allowed to continue. By generating this code, execution

of the program could actually take place although the
results would probably be invalid. This example might
! result 1in the exXpression being of the wrong type and

P further errors reported.

4.3 SYMBOL TABLE

o The symbol table 1is wused by the compiler to store
information about the names in the program. As

Q . implemented the names are left in the abstract syntax tree

o 47

s — - —
v . .
_ —— — - —

THE ADAl COMPILER

and a pointer to the 1identifier node is stored in the
symbol table. The characters of the name are distributed
as children of the 1identifier node. Comparison of two
identifiers is done by pattern matching the two identifier
subtrees. This leaves the storage for names in the syntax
tree and conserves memory since an identifier is stored in

only one place.

4.3.1 SYMBOL TABLE STRUCTURE

The symbol table structure is one area that required
major revisions to do the desired expansions. The symbol
table data structure was revised to hold much more
information about a symbol. This was required since new
types were introduced and functions were allowed. Also
fields were added to allow parameters for functions and
procedures and to allow overloading to be implemented at a
later date.

The symbol table is implemented as an array. This is
a simple method that allowed for easy implementation of
packages. An array of integers is very easy to read and
write to disk to allow the visible part of a package to be
saved when it is compiled and then read back in when it is
used. This saving of the symbol table is necessary to
avoid the necessity of recompiling the package each time
it 1is wused. This reading and writing of the symbol table

is the main extension to the symbol table that was

48

. THE ADAl1 COMPILER

implemented.
The new data structure is shown in Appendix D. A

discussion detailing the use of each field will also be

s ge PRI U

found there.

4.3.2 SYMBOL TABLE ROUTINES

g The symbol table routines did not require any major
modifications since overloading was not implemented.

Overloading would regquire the lookup routine to find all
visible occurrences of an identifier. These would be
linked together and passed back to the compiler. Since
overloading is not allowed only the first occurrence of an
identifier is found and the symbol table index is

returned.

4.4 CODE GENERATION

< The code generated by the compiler 1is for a
pseudo-machine similar to the PL/0 interpreter written by
Niklaus Wirth (Ref 18). Code is generated as the compiler
walks the tree. Each instruction generated contains a
pointer to the abstract syntax tree node which is thought
to be responsible for the instruction. This pointer is
used by the interpreter to dynamically show the programmer

what part of the program is being executed.

— 4j--h-----ﬂu--II-n-__m._.---nliﬁﬂ;gg_&_m&

THE ADAl1 COMPILER

4.5 THE INTERPRETER

The interpreter can be called by the syntax directed
editor or executed independently. The interpreter calls
the compiler to ~ompile the program and if no errors are
detected the program is executed. Using the information
in the code element, the interprgter is able to highlight
the program tree display to show where in the program
exXecution 1is currently occurring. The highlighted portion
of the tree moves around as instructions are executed to
trace program execution. The interpreter also displays
the top few elements of the run time stack and the next

instruction to be executed.

4.5.1 MODIFICATIONS TO THE INTERPRETER

i The interpreter required several revisions to get it
to run on the Vax 11/780. These revisions were due mainly
to differences in the way the micro-computer operating
system required space to be allocated and the way the Vvax
required it.

Code for some of the pseudo-instructions of the run
time machine had to be modified to accommodate differences
in the way the two computers and their C compilers handled
expressions. For example the _SUB instruction was coded

push(-pop() + pop())

This seems to be correct but the result of execution as

50

————

THE ADAl1 COMPILER

shown by running a program with a subtraction in it was

incorrect on the Vax. The code was changed to

i = -popl();
j = pop();
push(i+j);

This code seems to do the exact same function but the
results of the two are different. The first set of code
actually gives the negative of the correct answer. The
second set of code gives the correct answer. The reason
is unknown but probably lies in a different implementation
of the C compilers used on the two machines. The code to
evaluate the relational instructions; LES, LEQ, GRT, GEQ;
were also changed in this manner.

They were changed in this manner rather than directly
manipulating the stack in order to ensure stack integrity
by wusing the stack manipulation functions, push and pop.
Another method that could have been used was to change the
operator being used in the interpreter. Thus SUB
instruction would have become

(push(pop() = pop()});
This would not be portable to other machines nor would it
be clear as to why the apparent order of evaluation was
changed. To avoid this ambiguity, this method was not
used.

The other changes that were made to the interpreter
involved the addition of instructions to handle the new

statement forms added to the subset.

51

THE ADAl COMPILER

4.6 CURRENT IMPLEMENTATION AND EXTENSIONS

The compiler as implemented by Scott Ferguson was for
a limited subset of Ada. Various extensions and
modifications were made to this subset. The extensions
include new predefined operators and functions. The
modifications to the current compiler were done to allow

predefined data types other *'.an integer to be used.

4.6.1 BOOLEAN OPERATORS

The new predefined boolean operators added to the
compiler are the AND_THEN, OR_ELSE, and XOR. The AND_THEN
and OR_ELSE presented several problems in their
implementation. Though the implementation is similar to

the other Boolean operators in form, they had to generate
code much differently since their intent is as

short-~circuit operators.

The AND_THEN operator must evaluate its left operand
and if it has a value of true the right operand is
evaluated. If the wvalue is false then the right operand
is not evaluated.

Similarly the OR_ELSE operator must evaluate its left
operand and if the value 1is false it must evaluate the
right operand: If the wvalue 1is true then the right

operand is not evaluated.

52

THE ADAl COMPILER

locations of the 1instructions be saved until the entire
expression 1is evaluated so that the code can be fixed to
jump to the correct location.

This was done by <creating two new instructions for
the interpreter, _AND THEN and _OR_ELSE. The code was
also generated one node higher in the tree than for the
other Boolean operators. This allowed the locations for
the branching instructions to be linked together and then
fixed after the expression was fully analyzed. See

Appendix E for the code.

4.6.2 INTEGER OPERATORS

The other new predefined operators added were REM and
MOD. These were rather easy to include in the compiler
since they only involved adding new case values to
existing functions. They did cause some problems for
inclusion in the interpreter since C does not have a REM
function. This meant code for the REM function had to be
written. After some experimentation using the examples in
the Ada reference manual (Ref 7), a formula was devised to

calculate the correct value. See Appendix E for the code.

4.6.3 SUBPROGRAMS

The Ada0 subset included only procedures. The Adal

subset was expanded to include functions as well. This

53

i

THE ADAl COMPILER

expansion required the code used to analyze and compile
procedures to be changed because the Adal0 subset did not
have a return statement. Since Ada requires all functions
are required to have at least one return statement, the
return statement had to be added to the Adal grammar.
Since the code required to handle functions and procedures
is very similar they are discusséd together.

Functions were rather easy to include in the extended
compiler because a function 1is essentially a procedure
which returns a value. Procedures were already included,
so the extension amounted to modifying existing code to
fit the function syntax. It is the returning of a value
that requires the use of a return statement.,

The code to compile a procedure also had to be
changed to accommodate the return statement. Two changes
were made. The first was to indicate a procedure was
being compiled. The other was to fix the code generated
by the return statements. Since procedures do not require
a return statement no code was written to verify the
existence of a return statement only to fix the code
generated if any exist.

The return statement caused most of the problems,
mainly because it could appear anywhere in the body of a
function or procedure. These problems included
determining the type of subprogram currently +bteing

compiled, where to put the value being returned, how to

THE ADAl COMPILER

verify 1its type, and how to link the return statements to
the end of the subprogram so that the stack clean up steps

could be done properly.

4.6.3.1 SUBPROGRAM RETURN

When the return statement is compiled it is necessary
to know 1if the return is from a function or a procedure
since a function return must include an expression while
the procedure return return cannot.

Since the return statement can only appear within the
statement body and the type of the statement body cannot
change until the body is complete, an external pointer can
be used. An external symbol table pointer is set to point
to the name of the current function or procedure being
compiled. The pointer 1is set just before the body is
compiled. When a return statement is encountered the
subprogram type of this name 1is checked to see if a
function or procedure 1is being compiled. Appropriate
2ctions are taken 1in each case. The code to handle a

return statement is shown in Appendix E.

4.6.3.2 VALUE RETURN FROM A FUNCTION

The problem of how to save a value being returned
from a function was also rather easy to solve. The

calling routine expects the value to be on top of the

THE ADAl COMPILER

stack when the return is made therefore code was generated
to ensure the value being returned appeared where it was
expected. The solution involved a two step process and is
limited to handling simple data types. The solution can
be easily expanded to handle more complex data types but
since they were not in the subset the extensions were not
made.

The first step was to create a stack entry for the
return value before the function was actually called.
This ensured the value would appear on top of the stack
upon return and it allows the function to do its normal
stack clean up with out worrying about what to do with the
returned value. This 1is done by loading a 0 value onto
the stack. To expand this to data structures a 0 could be
loaded for each element of the structure.

The second step was to store the value into this
location. This location is a -4 offset from the
function's stack base. Thus a store instruction with
offset -4 1is generated just before the stack ‘clean up and
subprogram return instructions are generated. To expand
this to handle data structures a similar store instruction
could be issued for each element of the structure.

Several problems with this method exist. These are a
function return statement that does not return a value,
return to the operating system, and return type

validation. These problems were handled rather easily.

56

THE ADAl COMPILER

A function return statement that does not return a
value 1s 1in error and must be reported as such. This is
handled quite easily but the wuser may want to allow
execution to occur in spite of the errors. Partial
execution 1is possible and if the statement which caused
the errors 1is not executed the program may actually give
correct results. To allow partial execution to occur an
instruction 1is generated to put a value onto the stack in
place of the value that is expected. The value used is 0
but to cause termination the undefined value could be
used. Another solution would be to generate an abort
statement with an appropriate error message.

To allow return to the "operating system" the
interpreter was modified to push an extra 0 onto the stack
to account for the wvalue being returned by a function.
This can occur when a function 1is being written as a
separate entity to be used by several programs. Though no
method of separate compilation is implemented, a function
could be written and tested independently with this
change.

The third problem is type validation of the value
being returned. The type must be checked when the
expression is compiled and its type 1is known. The

solution is discussed in the next section.

57

THE ADAl1 COMPILER

4.6.3.3 RETURN TYPE VALIDATION

The type validation problem is also rather easy to
solve., It is actually a two part problem. The first part
is handled by the compiler to check that the expression is
of the correct type. The second must be handled by the
interpreter to verify the value being returned is in the
correct range for a subtype.

The compiler can do 1its checking using the symbol
table pointer discussed earlier. This pointer gives
access not only to the functions name but also t the type
it must return. Using the pointer the expected and actual
types are compared. If they are the same the type is
returned. If not an error message is generated and error
is returned. This problem will be handled by the semantic
analyzer when it is implemented.

The problem of range checking 1is handled by the
interpreter and was not implemented since subranges were
not 1in the subset. The solution is rather easy and is
given now. The compiler must generate code to load the
upper and lower bounds of the range onto the stack and an
instruction to cause the wvalue to be checked. The
interpreter must then execute these instructions and leave
the value on the stack if it is in the range or generate a

run time error if it is not in the range.

58

THE ADAl COMPILER

4.6.3.4 LINKING THE RETURN TC THE END OF THE SUBPROGRAM

Linking the return statements to the end of the
subprogram was the most difficult problem to solve. Two
potential solutions were investigated.

The first potential solution is to generate the code
to do the stack clean up, subprogram return and value
store each time a return statement is compiled. This is
easy to do but requires the symbol table to be modified to
hold the number of names declared in the subprogram. It
also requires 2 or 3 instructions to be generated for each
return statement.

The other method is to generate a jump instruction to
transfer control to the end of the subprogram where stack
clean up, subprogram return, and value store will be done.
This requires the compiler to do some extra work since the
jump instructions must be linked together to allow them to
be fixed when the subprogram erd is found. This requires
the compiler to keep a list of the jump instructions. The
jump instructions themselves can be used for this purpose
since the operand fields are not wused until the
instruction is fixed. Only a single new variable is
needed to keep track of the return list. This variable is
needed anyways to indicate whether a subprogram has a
return statement or not.

Since the second method was rather easy to implement

and required less memory for a subprogram with more than

59

THE ADAl COMPILER

one return statement it was chosen. See Appendix E for

the code written to implement these features.

4.6.4 DATA TYPES

The modifications to the Ada0 compiler to allow new
types to be added were quite extensive. The Adal0 compiler
uses functions that return one of four possible values,
SUCCESS, ERROR, a symbol table index, and a value. Only
functions that returned SUCCESS had to be changed, to
return a type value. Code also had to be added to verify
the returned type was alright in the context it appeared.

For example 1in the if statement the expression must
be a boolean expression. The syntax for expression allows
any type expression to be entered so the expression
analyzer had to be changed to return a type and the
if statement analyzer had to test that type. A full list
of the modified functions is shown in Appendix xXx.

A simple semantic analyzer was embedded in the
compiler. It allowed type checking but could not handle
the problems of overloading. This approach was used since
a separate semantic analyzer will be almost as large as
the compiler itself and when it is written it should take
overloading into account and solve the problems
overloading causes. Since overloading was not allowed in
the Adal subset, this problem was not :¢.vdressed except to

design a mecharism to handle overlocad resolution. That

60

THE ADAl COMPILER

design is presented in the next chapter.

4.6.5 OTHER MODIFICATIONS

Other modifications had to be made to the compiler.
These involved differences in how the micro-computer which
Ferguson used and the VAX 11/780 do things. These changes
were minor but difficult to pin down since they did not
appear until the compiler was actually being tested. The
main area of <concern was how memory is . dynamically
allocated to a program. The way Ferguson had allocated
memory to the Ada0 compiler should have worked on both
systems but it did not. The compiler did not catch the
problem since it was not a syntax or semantic error but a
difference in how the functions involved were implemented.
This 1is a prime example of how a standardized language and
implementation, like Ada, would have saved time and
effort.

The second change was in how thes 'arious tools of the
environment called each other. This again was not caught
until the system was tested as a whole. The problem was
in the function, EXECL, which used 1its arguments
differently on the two systems. Again the change was
minor but still a change that should not have been
necessary. To complicate matters neither system

documented their usage well and the changes had to be made

through experimentation.

PT——

ot

THE ADAl COMPILER

The third area of change was due to changes in the
Ada syntax as presented in the Ada standard (Ref 6). The
Ada grammar was changed in several subtle areas between
the preliminary Ada reference grammar (Ref 7) which Scott
Ferguson used, and the Ada standard which I had to follow.
Most of the changes were in areas that did not affect this
thesis effort, but one change did.

This <change 1is the introduction of a new level of
precedence for operators, the highest precedence
operators. The newly defined highest precedence operators
are an exponentiation operator, the NOT operator, and an
absolute value operator, ABS. In the preliminary
reference grammar the NOT operator was defined as a unary
operator, while the other two were not defined at all.
The NOT and ABS operators are unary operators but they are
given a higher precedence than the other unary operators
defined 1in the Ada grammar. This change in precedence
required several changes to the grammar and changes to the

compiler to handle the new syntax.

62

DESIGN OF THE NEW TOOLS

5.0 DESIGN OF THE NEW TOOQOLS

Several new tools were designed as a result of this
thesis effort. The original intent was to also do the
implementation of these tools but time limitations made this
impossible.

The new tools designed are a semantic analyzer, a
method for passing parameters to subprograms, and data

structures to allow user defined data types.

5.1 SEMANTIC ANALYZER

A semantic analyzer is needed to resolve overloading of
names in Ada. Languages like Pascal do not need a separate
semantic analyzer because names cannot be overloaded as they
can 1in Ada. A simple symbol table search is all a Pascal
compller needs to do since only one instance of a name is
visible at anytime. Either a name is in the symbol table or
it 1is not and the compiler does its analysis accordingly.
An Ada compiler must also consider the context in which a
name appears because all instances of a name are potentially
visible.

Since this analysis can be quite complicated a separate

analyzer is proposed and designed.

DESIGN OF THE NEW TOOLS

5.1.1 THE BASIC SEMANTIC ANALYSIS ALGORITHM

The semantic analyzer 1is called by the compiler when
the compiler needs to know the type of an expression. The
compiler passes the root node of the expression to the
semantic analyzer. The semantic analyzer uses this node as
the root of the tree it must analyze. The semantic analyzer
walks this tree much like the compiler would and determines
the type of each component of the tree.

The analysis takes place in three phases or passes.
This 1is all the analyzer requires to analyze and completely
type an expression (Ref 2). This analysis will result in
either a wvalid expression with each node of the tree being
typed or an invalid expression. An invalid expression is
one that either does not have a valid interpretation or has

more than one valid interpretation.

5.1.1.1 PASS ONE

The first pass is a top down pass that hangs the
desired types onto each node of the tree. This is done by
analyzing expression beginning with the operator that will
be executed last. This operator is the rightmost operator
with the lowest precedence in the expression. Since the
tree being analyzed 1is an operator precedence tree the
rightmost operator at this level in the tree is chosen. The

operator is analyzed and right and left operand lists are

64

. sttt it . L6 e L e

DESIGN OF THE NEW TOOLS

developed for 1it. If either of these lists is empty an
error 1s reported and analysis can stop. If both lists are
non-empty they are passed to recursive calls to pass one to
analyze the operands as expressions themselves. This
process continues until a leaf node is reached at which time

pass two is called.

5.1.1.2 PASS TWO

The second pass 1is a bottom up pass that delivers the
available types for an expression based on the types
available in the tree below. These available types are
compared with the 1list of desired types for the node and a
new list 1is created. This new list consists of the types
that are on both the available list and the desired list.
If this 1list is empty an error is reported and analysis con
stop. If the 1list 1s non-empty, it is hung on the node
replacing the desired list and it is passed back up the tree
to the expression above. This process continues until the
root node of the expression 1is reached at which time two
possible results can occur, a single valid type or the
expression has multiple valid types.

If the expression has a single valid type pass three is
run to resolve any ambiguities that still appear in the
tree. If the expression has more than one valid

interpretation an error is reported and analysis is stopped.

65

tenstiniin

DESIGN OF THE NEW TOOLS

This is the only point at which multiple wvalid

interpretations cause an error to be reported.

5.1.1.3 PASS THREE

The third pass 1is another top down pass that must
resolve any remaining ambiguities. Pass two could be
written to indicate that no ambiguities appear below a given
node thus making analysis by pass three unnecessary. If at
any time during this pass an ambiguity cannot be resolved
the expression is invalid and an error must be reported. No
further analysis will resolve the ambiguity since previous
analysis has shown the interpretations to be valid and no

new restrictions have been introduced.

5.1.2 DATA STRUCTURES USED

The semantic analyzer requires two different data
structures to do its analysis. Both structures are linked

lists but their contents are somewhat different.

5.1.2.1 OPERAND LIST

The first structure is the operand list. This list
contains the currently valid type or types for the operand
or name in question. The structure consists of a type and a

pointer to the next element of the list.

66

4 DESIGN OF THE NEW TOOLS

5.1.2.2 OPERATOR LIST

The other structure is the operator list. This list
contains the currently valid interpretations of the
operator. This structure consists of five elements. The
valid type for the left operand, the corresponding valid
type for the right opérand, the type this operator will
return, the symbol table 1index of the operator, and a
pointer to the next element in the list.

The symbol table pointer for a predefined operator is
set to "-=1". This is because the operators are not in the
symbol table but will be recognized by the code generator
from the types of the operands. This will also save time
during execution since no function <call 1is made to

evaluate the operator.

5.2 PARAMETER PASSING

Parameter passing to functions and procedures in Ada
3 can be extremely complicated. The complications result
from the many diverse methods of passing parameters that
are allowed in Ada. Ada allows parameters to be in, out,
or in out parameters. They can be passed positionally, by
name, by default value, or any combination of the three.
Due to the complex nature, a full parameter passing
mechanism was not designed. Only positional parameter

passing 1is handled but the mechanism does not preclude

67

R R i R R P S

DESIGN OF THE NEW TOOLS

enhancement to handle the other methods. Positional
parameter passing 1s complicated because of the various

modes a parameter is allowed to have.

5.2.1 PARAMETER MODES

Parameters in Ada can be given one of three modes.
These modes are IN, OUT, and IN OUT. If no mode is given
in the declaration of a parameter it defaults to the IN
mode. A short explanation of each of these modes is given

below.

5.2.1.1 IN PARAMETERS

In parameters are treated as local constants inside
the subprogram. They have a value associated with them
when the subprogram is called and they cannot be updated

by the subprogram.

5.2.1.2 OUT PARAMETERS

Out parameters are treated as local variables inside
the subprogram. They do not have a value associated with
them when the subprogram is called but they are allowed to
be assigned a value. In fact the subprogram is considered
to be in error 1if an assignment is not made. The value
associated with an out parameter when the subprogram

returns 1is copied back into the location of the actual

68

-l

DESIGN OF THE NEW TOOLS

parameter that was wused in the call. For this reason an
out parameter must be a variable name and not an

expression.

5.2.1.3 1IN OUT PARAMETERS

In out parameters are also treated as local variables
inside the subprogram. They do have an initial value
associated with them when the subprogram is called and
they are allowed to have a new value assigned to them
during the execution of the subprogram. In out parameters
do not have to be updated by the subprogram. The value of
an in out parameter 1is also copied back when the
subprogram returns. In out parameters must also be

variables and not expressions.

5.2.2 PARAMETERS TO FUNCTIONS

Since functions are not allowed to produce any side
effects other than returning a value, out and in out
parameters are not allowed. This makes functions
relatively easy to handle since each parameter must have
an initial wvalue and that value is then pushed onto the
stack. The compiler must make certain that the formal
parameters are not updated or wused as out or in out
parameters to another procedure. This is relatively easy

since the parameters will be marked as constants and the

69

DESIGN OF THE NEW TOOLS

compiler ensures that a constant 1is not updated. Also }
since the values associated with the parameters are not
needed after the function returns the stack can be cleaned
up by the function return and the returned value(s) left

on top of the stack.

5.2.3 PARAMETERS TO PROCEDURES

It 1is procedures that cause the majority of problems
since they are allowed to have out and in out parameters.
In parameters are treated the same as functions. Their
value 1is pushed onto the stack and then the procedure
references it from there. This method was chosen for in
parameters since the value is known when the function is
called and the actual parameter can be an expression which
the run time machine will evaluate and leave the value for
it on top of the stack. Since that is where we want the
value to be, no special treatment is needed. Also if
default values are allowed they can be pushed onto the
stack if the actual parameter is not found for the call.

Out parameters cause many problems of their own.
Since they must receive a value during execution of the
subprogram the run time mechanism must be changed to
verify all out parameters were updated. Perhaps the
easiest way to do this is to reserve one bit pattern as an
undefined value. This value could then be detected by the

& run time mechanism if it was ever used as a valid value.

70

— j

B e A O et L [R T e

DESIGN OF THE NEW TOOLS

The wvalue that 1s the easiest to use is the smallest
negative number or the largest positive number. This
reduces the values a program can use but the restriction
is easy to 1live with since numbers of that magnitude

seldom get used in a program.

5.2.4 DATA STRUCTURES AS PARAMETERS

Structures like arrays and records can cause
problems. They c¢an be handled in two ways. The first is
to simply push all the values onto the stack and reference
them from there. The other idea is to push a pointer at
the first element of the array or record and reference
them indirectly. Both methods have their advantages and
disadvantages.

Pushing the structure onto the stack has the
advantage that only that procedure or function can address
that copy of the variable. This is especially useful if
the structure 1is an in parameter and it can be addressed

globally as well. The standard says that any program that

jaaerX My R

does that 1is 1in error since a "constant" (the formal

o .
A
s X

parameter) was updated during execution of the subprogram.
The handling of this problem seems to be beyond the scope
x; of this thesis effort and was not addressed.

The other problem that can arise is if the actual
parameter is visible to more than one concurrently

executing task. In this case the indirect method could

71

& o | - e — - 7

DESIGN OF THE NEW TOOLS

produce varying results depending on how quickly each task
executed. In this <case the program is also in error.
Since tasks were not included in the Adal subset, this
problem was not addressed.

Pushing all values onto the stack has its drawbacks
as well since it T"wastes" stack space. With a limited
stack this could present a problem for a large program.
Access through indirection does not have this problem but
it does have the problems discussed in the previously.
Since the former problem is much more difficult to solve
than running out of stack space, the method of pushing all
values onto the stack was chosen. If programs are written
that exhaust the stack space, the wuser must simply
recompile the interpreter and increase the stack space or

rewrite the stack handler to allow linked stacks.

5.2.5 PROPOSED SOLUTIONS

The Ada standard (Ref 6) does not specify how out and
in out parameters are to be handled. They can either be
passed by value (undefined) and then update the actual
parameter when the procedure 1is complete or they can be
passed by reference and be updated as the procedure
executes. To avoid some of the other problems, pass by
value and update on return was chosen.

Structures and simple names present no real problems

and are handled easily. This is because their addresses

72

DESIGN OF THE NEW TOOLS

are known at compile time and the code to do the load and
update can be generated correctly. The parameters that
cause problems are the indexed names like a single array
element. Since the index is allowed to be an expression
whose value is not known until execution, the location to
update 1is not known until run time. This is no problem

for the call but only for the return.

5.2.5.1 INDEX RE-EVALUATION

The first method that comes to mind is to evaluate
the expression and push the value ontoc the stack then load
the value wusing the index to get the value to be passed.
For the return the same expression can be re-evaluated and
the index used for the store instruction. That looks good
but what 1if value of the expression for the index has
changed. This can happen if one of the variables in the
expression 1s wused as an out or in out parameter to the
procedure or 1if it 1is wused globally by the procedure.

This method was not used.

5.2.5.2 INDEX LEFT ON STACK

The second method that came to mind was to leave the
value of the index on the stack after the load and then
use it when the procedure exits and the new value is

saved. A minor problem with this is that all parameters

73

T

DESIGN OF THE NEW TOOLS

below this one are now offset one too many and the
references to them will be incorrect. A solution seemed
to be to change the offset value in the symbol table but
this prevents recursion since the second call has no way
of saving the offset values from the first call. This

method was not used.

5.2.5.3 MODIFY SYMBOL TABLE

A third method that was investigated was to add the
new elements to the symbol table and then have the run
time mechanism reference them through the symbol table.
This would work but would require a maior rewrite of the
run time machine and the symbol table handler. For these

reasons this method was not used.

5.2.5.4 USE A SECOND STACK

The fourth method that was investigated involved the
use of a secondary stack by the run time machine. The
second stack 1is wused to save the index values for out
parameters. It 1s only used when a procedure is invoked
that has an out or 1in out parameter(s) and the actual
parameter used in the call is an indexed_componnt. This
required a minor rewrite of the run time machine but since
ceveral new instructions were being added, the rewrite was

inevitable. The rewrite does not change any of the

74

DESIGN OF THE NEW TOOLS

instructions currently implemented but was limited to
adding code to interpret the new instructions. Since no
major problems were found with this solution, it was
designed. The basic algorithm is given in Appendix C.

This 1is a workable design and it does not preclude an
extension to allow named parameter passing or default
parameter values to be used. This design also allows
recursion and seems to solve many of the Ada related
problems. One change seems necessary to this algorithm.
That 1s to handle overloading of names. This problem is
solved by using the semantic analyzer to resolve the
ambiguities and only use this algorithm as a code
generator after all ambiguities have been resolved. The
steps that verify correct types and number of parameters
can then be deleted since the procedure will be

semantically correct before this algorithm is used.

5.3 DATA STRUCTURES

The data structures to implement user defined data
types and allow for package elaboration are shown in
figure 5-1 and 5-2. A short explanation of how these

structures were developed and how they are used is given

below.

DESIGN OF THE NEW TOOLS

5.3.1 USER DATA TYPES

The user_data_type structure, shown in figure 5-1, is
used to store information about a user defined data type.
Eventually all data types will be "user defined”, since
the package standard will be used to pre-load the symbol
table with the predefined types and functions. In the
current implementation the predefined types and functions
are handled as special cases by the compiler. They are i

recognized and handled properly.

struct user_data_types
[

int name, /* pointer to name in tree */
base_type, /* pointer to base type */

first, /* pointers to first and */

last, /* last enumeration lits */

/* for enumeration types, */

/* fields for records, */

/* indices for arrays */

index_type, /* type of index elements */

num; /* number of values for */

/* enumeration types, * /

/* size of an array or */

/* record *x/

unsigned flags;:; /* binary flags explained */

/* below */

#define IS_ARRAY 0x01 /* type is an array */
#define IS _RECORD 0x02 /* type is a record */
#define IS ENUM 0x04 /* enumeration type */

#define INDEX_INT 0x08 /* indices are integer */

Figure 5-1 User Data Type

76

e e

C e L N s Tttt a3« xS

DESIGN OF THE NEW TOOLS

5.3.1.1 NAME FIELD

The name field 1s a pointer back to the node that
created the new type. The children of this node are the
name of the type. This is done to allow to data type
names to be compared in a manner similar to the one used

to compare to identifiers.

5.3.1.2 BASE TYPE FIELD

The base_type field 1is used for arrays and subtypes
to 1indicate the type of the elements of the array or the
base type of the subtype. Since this is a pointer into
the abstract syntax tree, it 1is possible to define an
array of arrays. This construct is left as illegal in the
Adal subset but since this 1is how Ada defines multiply
subscripted arrays, extending this data structure should

be easy.

5.3.1.3 FIRST AND LAST FIELDS

First and last have two uses. For enumeration types
they point into the abstract syntax tree to indicate the
first and last elements of an enumeration type. For
arrays they point into the abstract syntax tree to
indicate the first and last indices of an array. This is

unless the indices are integers then they are simply the

first and last indices.

o .-

DESIGN OF THE NEW TOOCLS

5.3.1.4 INDEX TYPE FIELD

Index_type 1is used for arrays to indicate the type of
indices the array uses. This is also a pointer into the
abstract syntax tree to allow two types to be compared.

If the indices are integers this field is set to -1.

5.3.1.5 NUM FIELD

Num also has two uses. For enumeration data types
and subtypes it 1is the number of elements in the type.

For structures it is the size in words of the structure.

5.3.1.6 FLAGS FIELD

The flags field is used to indicate type the new type
is. The 1s_array flag 1is set 1if it is an array. The
is_record 1s set for records. The is_enum bit is set for
enumeration types. The 1int_index 1is set if the indices

for an array is a range of integers.

5.3.2 WITH AND USE DATA STRUCTURES

The with and use data structures, shown in figure
5-2, are used for package elaboration. When a with_clause
is found in the abstract syntax tree the symbol table and

code for the package must be read in from secondary

78

f' DESIGN OF THE NEW TOOLS

storage. Before reading them in a search of the with_list
is done to ensure a package is only elaborated once. The
current environment is also searched to ensure the package
has been previously compiled and the symbol table and code
for it exist. As the symbol table 1is read in the
addresses of all procedures and functions must be updated
to indicate the new address currently being used. This is
very easy to do since the new address will be the old
address plus the current offset in the code array. The
new package name is added to the with list and processing

continues.

struct with list
{
int name, /* pointer to package name in */
/* syntax tree */
‘ first, /* index into symbol table to */
i /* first and last symbol table */
last; /* entries for the package. */

struct with_list *next; /* pointer to next */

: /* package name */
: struct use_list
' {
int name; /* pointer to package name in */
/* the syntax tree */
struct use_list *next; /* pointer to next */
/* use list */
]

Figure 5=-2 With and Use data structures

When a wuse_clause 1is encountered the with_list is

checked for the name of the package. If it is not found

79

e AN o W

DESIGN OF THE NEW TOOLS

an error is reported since a with_clause for that package
must precede the use_clause. If found the current
use_list 1is searched to see if the package is currently
visible. This is done to avoid having two or more
occurrences of the same package name in the use_list.

This speeds up the search process for the symbol table
routines since they only have to search a package's symbol
table once. If not found in the use_list the name is

added to the use_list and processing continues.

5.3.2.1 CHANGES TO SYMBOL TABLE ROUTINES

When packages are added to the subset some changes
are needed in the symbol table routines. The first change

is the 1lookup routine must be changed to search not only

the current symbol table but also the symbol tables of any
visible packages. The packages that are visible are the
ones that have been added to the use_list. A consequence
of this 1is that when the symbol table is peeled back to a

. previous level any use clauses that are no longer visible

<

must be removed from the use_list.

The symbol table lookup routine must also be able to
search for qualified names like A.X where A is a package
name and X 1is a name declared within the package. This
simply means the with_list must be searched for package A
and the the symbol table for package A is searched for X.

The fields of the two structures are explained well

80

?' DESIGN OF THE NEW TOOLS

enough in Appendix E so no discussion of the fields is

included here.

81

ULTIMATE GOALS AND ENVIRONMENT

6. ULTIMATE GOALS AND ENVIRONMENT

The wultimate goal, of course, is to get a full Ada
compiler implemented. This should be done with certain
other goals in mind. To blindly implement the full Ada
language without any thought to the remaining development
environment would be foolish. These other goals concern
the environment in which the programmer must function.
Each of these goals 1is aimed at improving programmer
productivity and reducing the time spent testing and
fixing a program. These goals are incremental
compilation, development of a multitasked environment, and

semantic specification of the language in use.

6.1 INCREMENTAL COMPILATION

The aim of incremental compilation is to further
reduce programmer idle time during the development cycle.
This 1s accomplished by reducing the time needed to
compile a progran. The syntax directed editor already
does some of this by maintaining the abstract syntax tree
between compiles. This eliminates the need to reparse the
program each time it is compiled.

Another aspect of this 1is the fact that the source
code wusually changes very 1little when a correction or
addition to it is made. This means that most of the code

the compiler generated on the previous run is still valid

82

ULTIMATE GOALS AND ENVIRONMENT

and could be reused if some method were devised to tell
the compiler which nodes had changed.

One method of doing this is to have the syntax
directed editor mark each node in the abstract syntax tree
with a flag to indicate no change, a change in this node
or a change occurred at some point below this node. Links
between the generated code and the abstract syntax tree
must also be maintained since the compiler must be able to
change the code 1if necessary. Since the compiler would
only have to gznerate code for those parts of the program
which had changed, significant time could be saved.

Two types of <changes can cause problems for an
incremental compiler. The first 1s any change in the
declaration of variables or subprograms. Since these
changes may have far reaching effects even on sections of
the program which have not changed a complete recompile
might be warranted. This 1s especially true in Ada
because of the problem of overloading and the fact that no
automatic type conversions are allowed.

The other problem 1is more specific to Ada. 1t is
caused when the environment or context of a program is
changed through new or different use and with clauses.
Once again a total recompile might be warranted. Since a
programmer would know when these changes had been made, he

could control the compiler through a pragma to turn the

incremental feature on or off.

ULTIMATE GOALS AND ENVIRONMENT

6.2 MULTITASKED ENVIRONMENT

Multitasking, which Ada supports, is another means of
reducing unproductive time. Since the CPU tends to be
relatively 1idle while it waits further user inputs, an
incremental compiler and/or a semantic analyzer could be
run as separate yet parallel tasks to the editor. The
syntax directed editor could trigger either one to analyze
a section of c¢ode that the user had Jjust entered or
changed. A specialized interpreter/debugger might also be
written to allow the programmer to test small sections cf
code independent of the rest of the program.

When this happens the tools seem to merge into one
multipurpose tool which the programmer can use to assist
in the development of programs. Using this tool properly
the programmer sees faster turnaround and a program that
is ready to test almost as fast as it can be entered into
the system. The programmer may also feel more confident
that the program is correct since sections of the code can
be tested as they are written.

The multitasked environment does present some
problems to be solved. These are mainly in the interfaces
between the tools and how the data structures in use are
protected. The implementation cannot allow two or more
tools to work on the same limbs of the tree unless th=2 two
tools are compatible. A typical example that must be

disallowed 1is having the editor delete a subtree while

84

ULTIMATE GOALS AND ENVIRONMENT

another tool is working on that same subtree.

6.3 SEMANTIC SPECIFICATION

New means have been developed to extend the syntax

description

specification

incorporated

of a language to

include

(Ref 9,13). These

extensions

its

semantic

could be

in a way that would allow the syntax directed

editor to use the semantic information to prevent semantic

as well as

syntactic errors.

since a change 1in a declaratio

This

n

effects. To be used by a programmer,

make the programmer wait after

made. This
be done in
giving the
immediately

returning to

such

is no trivial task

may have far reaching

such a tool must not

a change has been

probably means that the semantic checks would

background and erro
user the option of
or continuing with

fix the errors later.

85

rs

reported to the user

correcting

the

current

the error

effort and

T W S~ . o g i e =l . Rt 1 Aings .

RECOMMENDATIONS

7 RECOMMENDATIONS

Extensions to this thesis effort could continue in
several directions. Several major extensions were
presented in the previous chapter. Since they are the
ultimate goals of this effort, any extensions should be
done with them in mind.

Perhaps the most important continuation would be the
implementation of the tools designed and described in
Chapter 5. The extensions that were designed are the
semantic analyzer, the data structures necessary for data
types and packages, and a method to allow parameter

passing to functions and procedures.

7.1 ADA SUBSET EXPANSION

The mos obvious continuation from this point would
be to continue expanding the implemented subset until a
full Ada compiler is available. This would be not only a
good academic exercise but would also be useful to AFIT
since it would provide the school with a new tool to use.
The easiest direction to take 1in this effort would
probably be to adapt the run time machine developed by
Alan Garlington (Ref 11). Since his run time machine
already allows tasking, The design of such a mechanism

would be avoided.

86

RECOMMENDATIONS

7.2 REWRITE TOOLS INTO ADA

The other direction to take with this effort is to
guit expanding the subset and to rewrite the entire system
into Ada. This becomes especially attractive since
several Ada compilers have been validated and should
become available for use soon. Using a full Ada compiler
avoids the problems of doing the rewrite with the current
subset.

The first of these problems 1is speed. Since the
current 1implementation compiles to an intermediate code
that 1s interpreted the compilation of a package as large
as the cur.ent support environment would be extremely time
consuming. This speed problem would also show up during
execution since interpreting code 1s much slower than
running the equivalent machine code.

The other drawback 1s memory usage. Currently the
abstract syntax tree representation of a program takes
about eight times more memory than the equivalent text
representation. Another problem 1is the symbol table and
code array are limited due to the way they are

implemented. This could be solved by implementing them in

a more dynamic fashion such as a linked list.

-'AD-A138 027 ADA1: AN ADA SUBSET COMPILER FOR THE AFIT SYNTAX)./
DIRECTED PROGRAMMING ENV..{U} AIR FORCE INST OF TECH

. WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. M L MCCRACKEN
UNCLASSIFIED 05 DEC 83 AFIT/GCS/MA/83D-4 F/G 9/2

=z
=

.

'

R I

lls
FFEEER

e
k2 22
[E1Y e

=
flizs flis \\\\z_.;

\\\\L

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURLAU OF STANDARDS 1964 A

S B e @ b

‘i
1

i
i
¢
}
!
‘

Y VY BE . asndbeer

RECOMMENDATIONS

7.3 SUPPORT ENVIRONMENT

Other directions related research might take involve
the tools in the support environment. Either the current
tools could be enhanced or new tools written. Several
useful new tools come to mind. These include a code

lister, a code optimizer, online help facility, and a

program converter.

7.3.1 CODE LISTER

The code 1lister, as currently implemented, is a

simple tool used only to extract the code generated by the

" compiler and print it for the programmer. The power of

the code 1lister could be expanded to include the source
lines that generated the code. Since the code is already
linked to the abstract syntax tree, the source code is
available and could easily be included in the listing.

Shown with the generated code, the source code could prove
useful in showing the programmer how he could have written
a fragment of code more efficiently. Another use this
could have is as a debugging aid. The programmer could
study a fragment of code and see exactly how the compiler
interpreted the source code. This might help him spot an

error that was caused by how an expression is evaluated.

88

e Y

RECOMMENDATIONS

7.3.2 CODE OPTIMIZER

A code optimizer could work on the generated code to
optimize the code with regard to some characteristic the
programmer wanted to improve. This characteristic could
be execution speed, more efficient memory usage, or any
other measure the programmer desired. The optimized code
could be either machine 1language code or code for the

interpreter.

7.3.3 ONLINE HELP TOOLS

Online help tools would be useful for training or as
. a ready reference during the development stage. Several
tools come to mind. The first is a tool that would tell
the user what command the syntax directed editor will
accept at that point and exactly what the command would
do. This could be done either through a query by the user
or intelligently by the editor as it realizes the user is
having problems. A second tool would allow the programmer
to check what constructs the syntax would currently accept

and what each of them are.

7.3.4 PROGRAM CONVERTERS

Program converters fall into two basic categories.
The first would be a tool to convert a program written in

one subset of Ada into an expanded subset. This would

89

PR 2 R S w v

O vy boys. e s -

RECOMMENDATIONS

probably have to be done with programmer intervention
where a choice has changed or a newly required component
is needed but it would save time since programs would
become upwardly compatible. This would be especially
useful if the support environment were rewritten into the
Ada subset before a full Ada compiler ié available.

Another type of program converter would translate the
abstract syntax tree representation into some other
intermediate form. This could be wused to transfer
programs from one machine to another. Since the Ada
standard has proposed a new language, Diana, be used for
this purpose, it could serve as the target language. This
would allow programs such as the editor to be more easily

transferred from one computer to another.

7.3.5 INTERPRETER

The current interpreter could be improved to run
faster, use 1less memory or a combination of the two. It
could also be changed to do dynamic type and range
checking. Since tasking is a feature of Ada, a tasking
interpreter could be written either from Garlington's

design (Ref 11) or a design of the user's choosing.

90

RECOMMENDATIONS

7.3.6 PROGRAM LISTER

The program lister could be improved to give the
programmer a more detailed 1listing of the program. One
such improvement could be the generation of a cross

reference listing for the program.

7.3.7 DEBUGGING TOOLS

The debugging tools could be improved to do more run
time checks and some execution analysis. The execution
analysis could include listing how many times a statement
was executed, detecting that a variable is used before it
is 1initialized, or detecting that certain fragments of
code are unreachable and are therefore can be eliminated.
Another debugging tool that could be written is a tool to
automatically generate test data based on an analysis of

the program being tested.

1
|
|
!
|

3 Bibliography

1. Aho, Alfred V. and Jeffrey D. Ullman. Principles of
Compiler Design. Addison-Wesley 1979.

2. Baker, T.P. "A One Pass Algorithm for Overload Resolution
in Ada." ACM Transactions on Programming Languages and
Systems. 4 (4):601 (October 1982).

3. Barnes, J.G.P. Programming in Ada. Addison-Wesley 1982.

4. Barrett, William A, and John D. Couch. Compiler
Construction: Theory and Practice Science Research
Associates Inc. 1979.

S. Defense Communications Engineering Center. "Problems with
the Multitasking Facilities in the Ada Programming
Language." May 1981, (AD-A105229).

6. Department of Defense. Military Standard Ada Programming
Language. Washington, D.C. January 1983,
s (ANSI/MIL-STD-1815A).

vﬂ 7. Department of Defense. Reference Manual for the Ada
Programming Language. Washington, D.C. July 1980,
o (AD-A090709) .

. 8. Department of Defense. Requirements for ADA Programming
Support Environments - Stoneman. Washington, D.C. 1980.

9. Ferguson, Scott E. A Syntax-Directed Programming
Environment for the Ada Programming Language. Master's
Thesis Air Force Institute of Technology. December 1982,
(AD-A124843).

. A ik o gm

10. Fox, Joseph M. "Benefit Mcdel for High Order Languages."
Decisions and Designs Inc. Mclean, Virginia. 1978,
(AD-A053032).

11. Garlington, Alan R. Preliminary Design and Implementation
of an Ada Pseudo-Machine. Masters Thesis Air Force
Institute of Technology. March 1981, (AD-A100796).

12. Gaudino, Richard L. Analysis and Design of Interactive
Debugging for the ADA Programming Environment. Masters
Thesis Air Force Institute of Technology. November 1981,
(AD-A115636) .

P

13. Gordon, Michael J.C. The Denotational Description Of
Programming Languages - An Introduction. Springer-Verlag
1979.

14. Janas, Jurgen M. "A Comment on Operator Identification in
Ada." ACM SIGPLAN Notices 15 (9):39 (September 1980).

92

R i e)

15.

16.

17.

180

Bibliography

Ledgard, Henry F. and Andrew Singer. "Scaling Down Ada (Or
Towards a Standard Ada Subset}." Communications of the

ACM. 20 (2):121 (February 1982).

Pennello, Tom et.al. "A Simplified Operator

Identification Scheme for Ada." ACM SIGPLAN Notices. 15

(7&8) :82 (July-August 1980).

Wetherell, C.S. "Problems with the Ada Reference Grammar."
ACM SIGPLAN Notices. 16 (9):90 (September 1981).

Wirth, Niklaus. Algorithms + Data Structures
Prentice-Hall 1976.

93

= Programs.

APPENDIX A

APPENDIX A. META DESCRIPTION FOR THE ADAl SUBSET

The following is the META description of the ADAl

subset implemented by the ADAl compiler.

compilation =
compilation_unit ;

compilation_unit = <
func_body
proc_body >;

func_body =
([program_header]
@ func_spec ~ "is"

{ + decl }

{ + program_component }
@ "begin n

+ seq_of_stmts
@ "end" [~ designator 1 ";" ;

func spec =
"function" ~ designator ~ "return"
~ subtype_indication

-e

designator = <
identifier >;

proc_body =

[program_header]

@ proc_spec ~ "is"
{ + decl }
{ + program_component]}

@ "begin"
+ seq_of_stmts

@ "end" [~ identifier 1 "

-.
-e

program_header =
comment
{ @ comment } ;

proc_spec =
"procedure" ~ identifier

-

decl =
object_decl [~ comment]

e

94

* vmg o

i e e reies DA

APPENDIX A

program_component = <
func_body
proc_body >;

seq_of_stmts =
stmt
{ @ stmt 3} ;

identifier =
'AZ|az' ('09|AzZ|_laz' 3} ;

object_decl =
id_list = ":" [© "constant”] ~ object_type
[= initial] ";" ;

2 stmt =
. & simple_stmt |

-~

comment] ;

id_list =
identifier { identifiers]} ;

_ object_type = <
- subtype_indication >;
‘ initial =
: * ":=" ° expression ;
simple_stmt = <
assignment stmt
if_stmt
loop_stmt
return_scmt
] proc_call
comment
null_stmt >;

identifiers =
n n -~
14

identifier

-

subtype_indication = <
"integer"
"boolean”
"char" >;

: expression = <

: relation

? and_comp

{ or_comp
and_then_comp

, or_else_comp
Xor_comp >;

95

e

)

e

APPENDIX A

assignment_stmt =

name ~ ":=" ~ expression ";" ;
if_stmt =
"jf" = expression = "then"
+ seq_of_stmts
{ @ elsif part }
{ @ else_part]
@ Ilend" -~ ” if" ” ; [;
loop_stmt =
[iteration_clause ~] "loop"
+ seq of stmts
@ "end" -~ n 106p"_" : "o,
proc_call =

name " : " :

return_stmt = <
procedure_return
function_return > ;

comment =
L L L

null stmt =
nnull : " ;

procedure_return =
"return;" ;

function return =
¥return"

-

expression ";" ;

name = <
identifier >;r

relation =
simple_exp [~ relation_part !]

~e

and_comp =
relation { ~ and_relation } ;

or_comp =
relation { ~ or_relation } ;

and_then_comp =
relation { and_then_relation]} ;
or_else_comp =

relation { or_else_relation] ;

96

ek e Sy

o £ O

B v domld

It X

APPENDIX A

Xor_comp =
relation { ~ xor_relation } ;

elsif part =
"elsif" -~ expression = "then"
+ seq_of_stmts ;

else part =
- "else"
+ seq_of_stmts ;

iteration_clause = <
while_clause >;

simple_exp =
[unary_operator !] term {

-~

terms 1 ;

relation_part = <
relational >;

and_relation =
"and" ~ relation :

or_relation =
”or"

-

relation ;

and_then_relation =
"and then" ~ relation :

or_else_relation =
"or else” ~ relation ;

Xor_relation =
"ywor" ~ relation ;

while_clause =
"while" ~ expression ;

unary_operator = <
n*n

LI

term =

factor (factors 1}
terms =
add_op - term ;
relational =
rel_op

simple_exp ;

APPENDIX A

factor = «
exp_primary
abs_primary
not_primary >;

factors =
mul op

factor ;

exp_primary =
primary [~ expon_part

expon_part =
"**" < primary ;

abs_primary =
"abs" ~ primary ;

not_primary =
"not" ° primary ;

add_op = <

ll+ll

nwmn >;

rel op = <

"(”
I|<="
l'> "
l'>=l' >;

primary = <
decimal_number
name
nested_exp
char_lit
boolean_value
func_call >;

func_call =

designator " (" ")" ;
mul_op = <

LY

"/l'

"mod"

"rem" >;

decimal_number =
integer ;

98

]

.
’

w5 oo sdvmng 3 3 - Bt L pie A

APPENDIX A

nested_exp =
"(" expression "}"

~e

integer =
'09' { '09)_" 3 :

Char_lit =

wan [} }l "waen ;

boolean value = <
n true"
"false" >;

99

TSP AT I AT o - s Ak ¥ an A (Nt e

-~

APPENDIX B

APPENDIX B. OUTPUT OF THE META PROGRAM

The following is the output produced by META when the

ADAl grammar was used as input.

META 10/15/82

Source input = adalx.syn.
Ooutput file = adalx.sdf.
Goal symbol: compilation.

iteM NAME . ccceesseceseansasseassass. Used.. term/non..
alt/cat..

] 2 set
! 2 terminal
(2 terminal
) 2 terminal
* 1 terminal
* % 1 terminal
+ 2 terminal
' 1 terminal
- 2 terminal
- 1 terminal
/ 1 terminal
= 1 terminal
09 1 set
09|Az|_|az 1 set
09]_ 1 set
: 1 terminal
= 2 terminal
: 8 terminal
< 1 terminal
= 1 terminal
= 1 terminal
> 1 terminal
= 1 terminal
AZ|az 1 set
abs 1 terminal
abs_primary 1 non-term cat
add_op 1 non-term alt
and 1 terminal
and then 1 terminal
and comp 1 non-term cat
and_relation 1 non-term cat

100

e restea e e i Y > it s w peaer o e e Ce e e

APPENDIX B

and then comp

and_then_relation

assignment_stmt
begin
boolean
boolean_value
char
char_lit
comment
compilation

a single
compilation_unit
constant
decimal _number

“a single
decl
designator

a single

else
else part
elsif
elsif part
end

exp_primary

expon_part

expression

factor

factors

false

func_body

func_call

func spec

function

function_return

id_list

identifier

identifiers

if

if_stmt

initial

integer

integer

is

iteratioh_clause
a single

loop

loop_stmt

unconditional term.

unconditional term.

alternative.

alternative.

101

R RO RN

PR RPRERROEOREHERNR RN RBP PR

=N

bl X L L

non-term
non-term
non-term
terminal
terminal
non-term
terminal
non-term
non-term
non-term

non-term
terminal
non-term

non-term
non-term

terminal
non-term
terminal
non-term
terminal
non-term
non-term
non-term
non-term
non-term
terminal
non-term
non-term
non-term
terminal
non-term
non-term
non-term
non-term
terminal
non=term
non-term
terminal
non=-term
terminal
non-term

terminal
non-term

cat
cat
cat

alt
cat
cat
cat
alt
cat
cat
alt
cat
cat
cat
cat
alt
alt
cat
cat
cat
cat
cat
cat
cat
cat

cat
cat

cat

alt

cat

o s w3 4ol

) APPENDIX B
mod 1 terminal
mul op 1 non-term alt
: name ' . 3 non-~term alt
a single alternative.
nested_exp 1 non-term cat
not , 1 terminal
not_primary 1 non-term cat
null; 1 terminal
null stmt 1 non-term cat
a single unconditional term.
object_decl 1 non-term cat
object_ type 1 non-term alt

alternation alternative: subtype_ indication.
a single alternative. !

or terminal
or else terminal
or_comp non-term cat

or_else_comp
or_else_relation
or_relation
primary

non-term cat
non-term cat
non-term cat
non-term alt

B e e

alternation alternative: name.
alternation alternative: boolean_value.

proc_body 2 non-term cat
proc_call 1 non-term cat
proc_spec 1 non-term cat
procedure 1 terminal

procedure_return 1 non-term cat

a single unconditional term.

program_component 2 non-term alt
program_header 2 non-term cat
rel_op 1 non~-term alt
relation 11 non-term cat
relation_part 1 non-term alt
a single alternative.

relational 1 non-term cat
rem 1 terminal

return 2 terminal

return; 1 terminal

return_stmt 1 non-term alt
seq_of_stmts 6 non~-term cat
simple_exp 2 non-term cat
simple_stmt 1 non-term alt

alternation alternative: return_stmt.

stmt 2 non-term cat
subtype_indication 2 non-term alt

term 2 non-term cat

terms 1 non-term cat

then 2 terminal

true 1 terminal

unary_operator 1 non-term alt

while 1 terminal i

APPENDIX B

while_clause
Xor

Xor_comp
xor_relation

-

121 elements described.
312 nodes in syntax description file.

0 errors detected.
META processing complete.

non-term
terminal
non-term
non-term

cat

cat
cat

APPENDIX C

APPENDIX C. DESIGN FOR PASSING PARAMETERS TO SUBPROGRAMS

10.

Find the subprogram name in the symbol table.

Get the next parameter from the associated parameter
list.

Determine the type parameter it is. If it is an in
parameter goto step 4. if it is an out or an in out
parameter goto step 5.

Call expression to evaluate the parameter. A type
will be returned verify the type is correct.
Generate an instruction to pop the stack. This last
instruction is put into a list so that it can be
appended to the code array after all parameters are
evaluated. Goto step .

Verify the actual parameter is a variable name that
has a location associated with it. If not generate
an error that says the parameter must be a name and
not an expression.

Check if the actual parameter is an indexed
component. If it is then goto step 9.

If the formal parameter is an out parameter generate
an instruction to load the undefined value. 1If it is
an in out parameter generate the code to load the
value.

Generate an instruction to store the value back and
prepend this instruction to the list of instructions
that will be added to the code array after all
parameters are processed. Goto step .

Generate code to evaluate the index. 1If the
parameter is an out parameter goto step 10. If it is
an in out parameter generate an instruction to copy
the index to the index stack. This instruction will
leave the index on the run time stack. Generate an
instruction to load the value onto the stack using
the index on top of stack. Goto step 1ll.

Generate an instruction to move the index from the
run time stack to the index stack. This instruction
removes the index from the run time stack. Generate
an instruction to load the undefined value onto the
run time stack.

APPENDIX C

11. Generate an instruction to save the value when the
procedure returns. Prepend this instruction to the
list of instructions to be added to the code array
after all parameters are evaluated.

12. Check if another parameter is needed for this
procedure. Check if a parameter is available. If
both are true goto step 2. 1If not generate an error
saying either a parameter is missing or an extra
parameter was passed.

13. Append the list of instructions being. held at bay to
the code array.

14. Return control up the tree.

105

N 4~r"\.} .

APPENDIX D

APPENDIX D. A DESIGN FOR THE SEMANTIC ANALYZER

1.
2.
3.
4.

10.

11.

12.

13.

14.
15.
16.

17.

18.

19.

If the expression is a function call goto step 34.

If the expression is a procedure call goto step 23.

If the expression is a name goto step step 19.
({Expression still has an operator) Find the
controlling operator. It is the rightmost operator at
this level in the tree.

If the operator is a unary operator goto step 18

(Binary operator) Find all occurrences of the operator
in the symbol table. If none return error.

Create an operator list entry for each occurrence.

If a type list was passed in eliminate any entries in
the operator list that cannot return one of the desired
types.

If the operator list is empty return error.

Create the left operand list from the operator list.

Call the semantic analyzer with the left operand list
and the left hand operand.

If error is returned return error.

Compare the returned type list with the operator list.
Eliminate elements from operator list whose left hand
operand type does not appear in the returned type list.
Repeat steps 9-13 for right hand operator.

If the list is empty return error.

If the operator contains a single entry goto step call
pass3. 1If pass3 returns error return error.

Create operand list from the return types of the
operator list. Return this list.

(Unary operator) Same as a binary operator (steps
6-17) except only done for a single right hand
operator.

(Name) Find all occurrences of the name in the symbol

106

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

APPENDIX D

table. If none return error.
Create an operand list element for each entry.

If a type list was passed in eliminate the unavailable
types from it by comparing it to the operand list
created in step 20. Return the modified type list.

No list passed in return the operand list generated in
step 20.

(Procedure call) Find all occurrences of the procedure
name in the symbol table. 1I1f none return error.

Count the number of actual parameters used in the
procedure call.

Create a list of the procedures found in the symbol
table which need that number of parameters. 1If the
list is empty return error.

If no parameters are needed and more than one procedure
is possible return error. Else mark the syntax tree
node with the symbol table entry of the procedure name
and return success.

Repeat steps 2B-32 for each parameter and procedure in
turn.

Check if the first actual parameter is a name or an
expression. If it is an expression eliminate all
procedures that require an out or in out parameter. 1If
the list is ncw empty return error.

Create an operand list from the procedure list for this
parameter.

Call the semantic analyzer with the operand list and
the first parameter.

If error is returned return error.
Compare the returned type list with the procedure list

and eliminate any procedures which do not have this
parameter available.

107

APPENDIX D

33. If two or more procedures remain in the procedure list
return error. If only one remains call pass 3 with
each parameter and its type in turn. Return success.

34. (Function call) Same as procedure except as noted
below.

35. Add step 25a. 1If a type list is passed in compare it
to the types that can be returned. Eliminate any
functions which cannot return a valid type.
36. Eliminate step 28 since only in parameters are allowed.
37. Change step 33 to If two or more functions remain in
the list create the type list from their return types
and return the list. If a single function is in the
list call pass 3 with each parameter and its type in
turn. If pass 3 returns error return error. Otherwise
return the type of the function.
PASS 3
Pass 3 is very similar to the actual semantic analyzer
except that nc multiple types are allowed to be returned.
If at any time during this pass an ambiguity cannot be
resolved the expression is in error and error is returned.
As each node of the syntax tree is correctly typed it is
marked with the appropriate symbol table pointer and a flag
is raised to indicate the expression is ok below this node.
Pass 3 must check this flag before it descends the tree

further. This 1is only to avoid resolving ambiguities more

than one time.

108

e

SYSTEM USERS MANUAL

APPENDIX E - SYSTEMS USERS MANUAL

This appendix describes how the compiler,
interpreter, and code lister are invoked, the inputs they
expect and the outputs they produce.

Before any of these tools can be used a program must
be entered wusing the syntax directed editor. The syntax
directed editor is invoked with the command, synde TEST
adalx. This command will produce a program file named
TEST using the 1language ADAlX. For more information on
using the syntax directed editor refer to the syntax

directed editor users manual (Ref 9).

E.1 INVOKING THE COMPILER

The compiler can be invoked in three ways, from the
syntax directed editor, directly by the user, or by the

interpreter.

E.1.1 FROM THE SYNTAX DIRECTED EDITOR

To invoke the compiler from the syntax directed
editor simply enter the invoke compiler command. This
command is selected by the user when the editor is
configured using the CONFIG program (Ref 9). The compiler

can be used in this way to do a preliminary semantic check

of the program.

P

SYSTEM USERS MANUAL

The compiler will flag up to five errors using
program tree markers. The compiler will halt processing
when either all error markers are used or the compilation
is complete. If invoked in this manner the compiler will
return control to the syntax directed editor with the
focus set at the first error in the program or at the root
of the program tree if no errors were detected. The user
can then correct any errors and continue entering the

program.

E.1.2 DIRECTLY BY THE USER

The second way to invoke the compiler is with the
command adalxC TEST, where TEST is the program the user
wants to compile. The compiler will still flag up to five
errors and will return control to the command level when
five errors are found or compilation is completed. To fix
an error the user need only invoke the editor with the
command, synde TEST. The editor will put the focus at the
first error or at the root of the tree if no errors were

detected.

E.1.3 FROM THE INTERPRETER

The third way to invoke the compiler is through the
interpreter. The interpreter calls the compiler to

generate the code it is to interpret and to link that code

110

BB IR =, RN
SYSTEM USERS MANUAL

to the abstract syntax representation of the program. The |

interpreter is invoked as shown below.

E.1.4 COMPILER INPUTS AND OUTPUTS

The compiler expects no special inputs other than the
program file given on the command line. The compiler
produces a file called TEST.cod where TEST is the name of

the input program file.

E.2 INVOKING THE INTERPRETER

The interpreter can be invoked in two ways, from the

] syntax directed editor, or directly by the user.

! E.2.1 FROM THE SYNTAX DIRECTED EDITOR

To invoke the interpreter from the syntax directed
editor simply enter the invoke interpreter command. This
command is selected by the user when the editor is
configured for the terminal in use (Ref 9). The
interpreter can be used 1in this way to do a preliminary
semantic and 1logic check of the program. This can be
especially useful if the wuser is not certain what a
specific instruction will do.

The interpreter first calls the compiler to compile
the program. The compiler works as described above. When

control 1is returned to the interpreter, it checks if any

111

SYSTEM USERS MANUAL

errors were detected. If some were the interpreter asks
the wuser if execution is to continue. 1If not control is
returned to the syntax Jirected editor as described above
with the focus at the first error. If execution is
allowed or the program had no errors, the execution
routine 1is called. Operation of the execution routine is

explained below.

E.2.2 DIRECTLY BY THE USER

The other way to invoke the interpreter is with the
command adalxl TEST. This will cause the interpreter to
compile and execute the program TEST. The interpreter
functions as explained above except that control will be
returned to the command 1level rather than to the syntax

directed editor.

E.3 PROGRAM EXECUTION

When a program is executed control is returned to the
user. The user 1is given a display showing the program,
the top few elements of the program stack, and the next
instruction to be executed. The portion of the program
thought responsible for that instruction is highlighted in
reverse video. The user is also given a choice of four

commands to input. The four commands are single step,

continue execution, restart, and exit.

—— e —

SYSTEM USERS MANUAL

Any command not described below is ignored and the

user is prompted tc enter a new command.

E.3.1 SINGLE STEP

The single step command, invoked by 'S' or ' ‘',
causes execution of the displayed instruction. The
display is wupdated and the user is shown the new program
stack, the next instruction, and the next program fragment
is highlighted. If the instruction executed was the last
instruction of the program or an INVALID instruction, the
interpreter 1is reset to reexecute the program from the

beginning, and the display is reset to its initial state.

E.3.2 CONTINUE EXECUTION

The continue execution command, invoked by 'C',
causes the interpreter to execute the program in a
continuous fashion until the end of program is found. The
displays are updated as 1if the user was single stepping
the program very rapidly. When the end of the program is
found the interpreter 1is reset as before and the user is

prompted for further inputs.

E.3.3 RESTART

The restart command, invoked by 'R', causes the

interpreter to reset itself to its initial state. Program

113

S s ER e e A CR———— .-

SYSTEM USERS MANUAL

execution will continue at the start of the program.

E.3.4 EXIT

The exit cormand, invoked by 'E', causes the
interpreter to halt execution and return control either to
the syntax directed editor or to the command level

depending on how the interpreter was invoked.

E.3.5 INTERPRETER INPUTS AND OUTPUTS

The interpreter expects only those inputs described
above. Any other inputs are ignored. The interpreter
produces no outputs of its own other than the displays
described above. The compiler does produce the file

TEST.cod where TEST is the input program file name.

E.4 THE CODE LISTER

The <code lister is invoked by the command, codelist
TEST, where TEST is the name of the program whose code the
user wants to 1list. The file TEST.cod must exist. This
is the file produced by the compiler when the program is
compiled. The code lister produces an output file called
TEST.codlst. This file can then be read and displayed by
any program which uses a standard text file as input such

as cat, more, vpr.

114

ARFENDEX F

JRE R4 RN RERR RS HEH A HHH R E SRR RER HRH R A H RS HEHH R H R RN S E AR R0 0004

structures.
HHHH I I M R R R R R S R R R R L RN R HE 4

] 00000 00 00 00 00 00000 00000 #
] 00 00 00 000 00 00 00 00 L]
] 00000 0000 00000 00 00 0000]
s 00 00 00 000 00. 00 00]
] 00000 00 00 - 00 00000 00000 4
] ¥
SYNtax-Directed Editor (c) Copyright Decesber 1982]
t CAPT. Scott Edward Ferquson, USAF, AFIT 6CS-820 t
* Modified October 1983 ¥
] CAPT. Michael L. McCracken, USAF, AFIT GCS-83D $
] #
+ SYNDE.H t
+ Define global information types and values for SYNDE data +
* *

/

finclude (stdio.h)

finclude “ctype.h®

fdefine SUCCESS 1 /¢ success return value 8/
fdefine ERROR (=1} /% error return value ¥/
/¢ special defined types #/
Sdetine REB register int /# type for reqister optisization 4/
ddefine BOOL int /% type declaration for boolean values &/
ddefine TRUE | /% boolean TRUE constant ¥/
fdefine FALSE 0 /% boolean FALSE constant #/
/¢ ¢ile action status “enuseration® values ¥/
fdefine TO_LIST 1 /% vector execution to lister #
fdefine TO_COMP 2 /% vector execution to cospiler 8/
$define TO_INT 3 . /% vector execution to interpreter 4/
$define TO_SYN 4 /% vector execution to synde t/
115

r

P AR

AFPPENDIX F

JA34400 80340 HEGE MR H AR HEHE R R L O R RS AR MR BB R LIRSS 0 HHE

] Abstract Syntax Tree (AST) node description. +
SHHM I M M L A S E R H R B L R L R 08/

struct ast_node { /% AST node structure 8/
char
a_flags, /% AST node flags (described below))
a_valuel /% contains character (or 0) for a node ¢/
L corresponding to a "set® elesents/
unsigaed .
a_prod, /¢ *pointer® to syntax elesent 8/
/e corresponding to this node &/
a_right, /% "pointer* to right siblingf if RTNOST#/
1% is set, this points to father &/
a_son} /¢ *pointer® to node’s leftaost son or &/
/e NIL if node is a leaf node L
H
Sdefine NIL 0 /% NIL pointer to "no* AST node 7
/% a_tlage sasks for bit-field valuey &
#define RTHOST Ox01 /% node is rightsost son 4
§define LTNOST 0202 /¢ node is lefteost son Y
ddefine ONLY O0x03 /% node is only child (left and right) &/
Sdefine ROOT Ox04 /% node is an AST tree root Ll

fdefine OPEN Ox10
tdefine ELIDE O0x20
fdefine MARK Ox40
ddefine FREE 0x80

/% node is an unsatisfied conditional &/
/% sark to suppress display of subtree #/
/% node is sarked in ¢ _sark list &/
/% node is free {unallocated) 4/

APPENDIX F

[HHH IR R R AR S S R L U R SRR H R AR LR S R S A 4 R 00 0000

t Syntax Tree node description. ']
FH I S LR R S M R M R R R SR R AR R MR RS 4044/

struct syn_node (

unsigned
s_flags, /% node flags (described below) &/
s_link} /% if header: 4
1L “pointer® to nase strings#/
1% 1§ slesant: 8/
H 1% *pointer’ to header 8/
Sdefine NAX_ALT 20 /% aax nusber of alternatives &/
/¥ in an alternation 4
/¢ s_tlags aasks for bit-field values Y
/4 for a definition header node-—)
fdefine ALT 0x0001 /% alternation rule header &/
tdefine CAT 0x0002 /% concatenation rule header #/
$define RULE 0x0003 /% rule header &/
fdefine STR 020004 /% string header &/
fdefine SET 0x0008 /% sat header ¥
fdefine HERD Ox0O0OF /4 node is a header node Ll
/% for a rule elesent node--- 8/
Sdefine CPTION 0x0010 /% optional rule elesent 4/
ddefine REPEAT 0x0020 /% repeated rule elesent &/
§define COND 0x0030 /% conditional OPTION or REPEAT &/
fdefine HIDE O0x0040 /% hidden conditional L\l
/% output forsats; 4
$define NEWLINE 0x0100 /% newline 8
Sdefine INDENT 0x0200 /¢ indent (and newline) Ll
fdefine LINE 0x0300 /% genarates new line 2
§define PRESP 0x0400 /% space precedes node L J
fdetine POSTSP 0x0800 /¢ space follows node L)

[HATHHHI I HH NN T I N R R

¢ Inage Beneration parassters.]
HHHHH M A H I I N/

Sdefine WIDE 132
fdefine DEEP 30
fdefine NILITE 0280

/% sax screen width in characters Ll

/% sax screen depth in lines &

/¢ highlight bit for display 7]
117

AFFENDIX F

Nt »-(;;-.t‘i’:fv " g

1H03 48 R HE A HE R E S HE RS HHH S HH AR A AR R L R R RS H H R R R LR B HE 00404

] Source File inforsation block.
HHH I H I HHHHH I H I NN/

struct file_info (

int
char

int

H

#_bufi

+_nase(18),
¢ _lang(141,
£_creatl1s),
t_last(18),
+_cont (343}

f_udit,
f_update,
+_avail,
f_root,
f_clip,
§_sark(10)3

/% creation file nase

/% associated language grasaar nase
/% creation date

/% last access date

/% confiquration control inforaation

/¢ return control to SYNDE editor
/% version update count

/% "pointer® to available list head
/¢ "pointer® to progras tree root
/¢ "pointer® to clipping tree root

/% place markers, 3 thru 9 ressrved 23

/s error sarkers

¢/
&/
8/
&/
&/

¢/
&/
&/
&/
%
7]
¢/

/4 I HAHHHH I I I R M N

Terainal Description File characteristics block,
HA IS I N L

/% input comsand “enuseration® values

Mefine _RIGHT | /% nove right
fdefine _LEFT 2 /% sove left
Sdefine _LEAF 3 /% sove to lea# node
$define LAST 4 /% sove back to last focus
Sdefine _UP 5 /% sove wp
idefine _DOWN 6 /¢ sove down
ddefine _LUP 7 /% loag up (skip only child nodes)
Sdefine _LDOWN 8 /% long down (skip only child nodes)
Sdefine _RINS 9 /% insert conditional right
fdefine _LIN 10 /% insert conditional left
Hdetine CLIP it 1% clip subtree
Sdefine _DEL 12 /% delete subtree (clip and kill)
Metine KILL 13 /8 kill sudbtres
define _COPY 14 /% copy subtres
$define _ELIDE 13 /% elide subtree (suppress display)
Sdefine _MHELP 18 1% help
Sefine WINODON 17 /% open/close sacond window
Sdefine _SEARCH 18 /% saarch for literal string
ddefine _AGAIN 19 /% saarch aqain
Sdefine _MARK 20 /% set/clear node sarker
Sefine 60 2 /% go to node sarker
Wefine _CONP Q2 /¢ invoke coapiler
$efine _INT 23 /% invoke interprater
Mefine _LIST 1) /% invoke lister
118
A TN e o Rt s .- - .

L

L7

s/
&
&
8/
&/
&/
&
%/
$/
8/
#
17
1)
8
#/
&
L7}
8
8/
&/
&/
8
&/
8/

gl Pt

AFPPENDIX F

$define _SYNDE 25
Sdefine _LRIGHT 2%
Sdefine _LLEFT 'y
Sdefine _REDRMI %
Sdefine _SAVE 3
Mefine WRITE 30
tefine _EXIT 3
struct tera_info (
int lines,
chars,
wize,
111601
char cads{321(8),
init(18],
tab(sl,
elide(8),
divigl,
clr(B),
pos(8],
e0l1{8],
dciBl,
rev(B),
noral8],
ion(8),
iof#(8),
ilel,
4181,
finil16)}
H
D S

/¢ invoke synde

/9 sove right past identical siblings
/% sove left past identical siblings
/8 clear screen and redraw it

/% save all current changes

/8 write to any given file

/¢ mit odit sassion (last cossand)

/% lines per screen

/% characters per line

/% window size

/% {reserved for expansion)

/% cossand input sequence strings
/¢ terainal control output sequences:
/% terainal initialization

/¢ tab display string

/¢ elision display string

/% window divider

/% clear scremn

/% position cursor

/% erase to end of line

/% delete character

/% snter reverse video sode

/% axit reverse video sode

/% enter insert character sode

/% mxit insert character sode

/% insert line

/¢ delate line

/8 terainal teraination

¢/
8/
8/
#
8
&/
&/

&/
s/
&/
&/

&/
8/
&/
&/
8/
&/
¢/
&/
[7]
L7
&/
&/
¢/
&/
&/
&
&/

APPENDIX F

R R SR H R SR HHE SR HE AR R R R SRR R R R R R A H R R R R E R 00004/

/& &/
It SYNBOL.H]
/e Sysbol table structure for compiler generation. 4/
I 7]

JHH L R R R LA S S R SR R A R L HE AL LR S R R LR R HE R R R R 00 00 00N/

struct sys_tadle (/% syshol table Ll
int

sya_node, /% node “pointer® to identitier 8

sys_level, /¢ lex lavel Y

sya_addr, /¢ oftset address 7]

syn_type} /% syshol type 8/

unsigned sys_flagsi /¢ syabol table fiags. described &/

/8 delow. L]
]

Mdefine SYNBOLS 30 /% syabol table size L 7l

1R T H R L R R RO S RO LR R H R AR RIS/

e ¥
/2 sysbol flags - used to give sore inforsation about a)
/* sysbol nase.)
I¢ 3/

R I L L T I L L T T L T L e L T e L e e e e Tt e 1t Y

Mefine TYPE_VAR 0x0001 /% sysbol is a variable 4
$define TYPE_CONST 0x0002 /% sysbol is a constant &
Sdefine TYPE_PROC 0x0004 /% symbol is a procedure ¥/
fdefine TYPE_INIT 020008 /% syabol was initialized &
Sdefine TYPE_TYPE 0x0010 /¢ sysbol is a type nase &/
Mdsfine TYPE_FUNC 020020 /¢ syabol is a function L

(AN HH I A R R O R N 48/

v &
1% variable types - gredefined &
/% &/

JHHRRHI N R H R N SR S S E R SR 04/

Mdefine TYPE_INT !
Mefine TYPECHR 2
Mefine TYPEBOOL 3

120

AFPPENDIX F

(40 R R R AR HE R A L R E R A E R R HR R R R RR R R0 0 R B0 44/

/% L7
/e ADAL.H 7
/% &/

[T H L I N R A R A RO A L S5 140000/

finclude *synde.h* /% systes global inforsation structures ¢/

$include "code.h* /% code generation structures

$include "sysbol.h® /% syabol table structures &

finclude "types.h* /% production type definitions 8

extern

struct code_word scodes /% pseudo-code &/

extern

struct sya_table dayabol /% syabol table #/

extern

int code_ptr, /% index of next code cell ¢/
sys_ptr, /¢ top of syabol table #/
level, /¢ current lexical level 8/
offant, /% current offset in level ¥/
ret_lst, /% raturn list for sub-prograes Ll
ret_type, /% return type for a function #/
body_types /% current sub-prograa type 7]

entern

char stypes[LAST_PROD 3, /% production types &/

#noson, #bool _exp, #int_exp} /% fraquent message strings &/

121

AFPPENDIX F

JHR5 3RS SRR SRR R RS R HEREEE SR HR LR MR I LI H S MR R AR 00Y/

It

It types.h - production type definitions

/e

&/
&/
&/

o L N e S T I L L e L L L iy

fdefine MUL_
$define PLUS_
Sdefine NINUS_
Mefine DIV_
Sdefine NEQ_
#define LES_
$define LEQ_
Mefine EQU_
$define GRT_
fdefine GEQ_
Sdefine AND_CONP_
Mdefine A_STAT_
Sdefine CONST
Adefine DEC_NUN_
$define DECL_
$define ELSIF P_
Sdefine IF_STHT_
fdefine I_CLAUSE_
Sdefine LP_STNT
Sdefine NANE_
Sdefine N_EXP_
Sdefine OR_CONP_
Sdefine P_CALL_
Sdefine P_COWP_
$define RELATION_
tdefine U_OP_
Hdefine REN_
Sdefine NOD_

DO DA N, O

—
(-]

12
13
16
17
18
)]
3
0
26
2
8
3
32
33

Soefine AND_THEN_CONP_ 11

Sdefine OR_ELSE_CONP_

Hefine 10R_CONP_
$define INTEGER_
Sdefine BOOLEAN_
Sdefine CHAR LIT_
Sdefine 1DENT_
Sdefine TRUE_
Sdefine FALSE_
Sdefine F_BODY_
Sdedine F_CALL_
fdefine P_S0DY_
Sdefine RET_STHT_

39
30
L)

Mefine BOOLEMN_VALUE_ 41

$define EXPON_PART
Sdefine ADS_PRIMARY_
$define NOT_PRINARY_

L)
L}
H

122

AFPPENDIX F

Sdefine EXP_PRIMARY
tdefine CHAR_
Sdefine PROC RET_
Sdefine FUNC_RET_
Sdetine COMMENT
Sdefing NULL_STHT_
Sdofine LAST_PROD,

43
44
L
48
L1
S0
31

123

. —— e T

|

APPENDIX F

JHARRS R SRS S HEE R OREARHE IR E R R AE HR R R R AR HEERRERER R A0S/

/¥ pseude-code word description #/
lOOQGlOOGlOIilillliiGlil’IOGQQQQI}lllIIQl’liill!l!||l|0||i|0|{||i|lli/

struct code_word (

char
c_opcode, /4 operation code &
c_label} /¢ label indicator \J

int
c_opi, /% first operand ¢/
€_op2, /% second operand &/
c_nodej /¢ *pointer® to AST node &/
/% which generated the L
/% the code word, &

Y
Adefine WORDS 312 /% code table size 4/
P T T T T T Y T T A LA R AR T AR A T A T Y
/t pssudo-code instruction operation codes 8/
1% T0P = top of stack 8/
JHRAEH IR E I S H S R A N L A R R A/
fdefine LAB O /¢ sark code word for label (no code) L\l
Sdefine IW ! /% jump to opi 8/
Ydefine CPY 2 /% copy TOP 8
$define STO0 3 /¢ [level opl, offset op2] s TOP 7]
fdetine CAL 4 /% call subroutine op2 at level opl &
$define P 5 14 jusp i$ T0P false to opl Y]
Sdefine EW & /¢ sat TOP = (TOP-1 == TOP) 7
$define NEQ 7 /4 set T0P » (TOP-1 's TOP) +
fdefine LES 8 /¢ sat TOP = {TOP-1 ¢ TOP) &/
fdefine LEQ 9 /% sat TOP = (TOP-§ (= TOP) #
Mdefine GRT 10 /¢ set T0P = (TOP-1 > TOP) 8
ddefine GEQ 1} /% set T0P = (TOP-1)= TOP) 4/
Mdefine NEG 12 /% sat T0P = -(T0P) &/
fdefine ADD 13 /% set TOP = (TOP-1 ¢ TOP) &
Sdetine SUBD 14 /¢ sat T0P = (TOP-1 - TOP) &
fdefine ML 13 /% sat TOP = (T0P-1 & TOP) ¢/
Sdefine DIV 16 /% sot T0P = (TOP-1 / TOP) 8/
Setine LIT 17 /% sat 10 = opl Ll
fdeftne LOD 18 /¢ sat TOP = [level opl, offset op2] &/
$define RET 19 /% return froa subroutine 8/
fdefine AND 20 /¢ st TOP = (TOP-1 & TOP &
Hetine OR A /¢ set TOP = (TOP-1 | TOP) 4/
fdefine _NOT 22 /% sat TOP = ! (T0P) Y]
Mefine 8 23 /% stack pointer -= opl 8/
Sdefine MOD 24 /¢ sat T0P = (TOP-1 sod TOP)]
Mefine REN 20 /% sat TOP = (TOP-1 res TOP) 8/
Mdefine AND_THEN 26 /¢ jusp if TOP false to opl 7
fdefine OR ELSE 27 /4 jusp i TOP true to opl Y]
124
g o PR -

p el PO
L AR R S

APPENDIX F

$define XOR 28 /% set TOP = (!T0P-1 & T0P) | (TOP-1 & 'TOPI#/

fdefine ABS 29 /4 set TOP = abs(TOP) #/
fdefine EXP 30 /% set TOP = (TOP-1 3% TOP) 8/
$define NOOP 3! /% na operation #/
{
125

- RO e SR o - -

APPENDIX F

{2344 HERERER R R R R SRR R R H MR RS REEERHESEH LS R AR ER IR0 ERE/

/¢ &/
/% ctype.h ~ giobal defines and one line functions #/
I replaces the UNIX file ctype.h Y]
It)

/1R R R R R R RS A E R R R R H RS R R R A LR LA R R R R R HR R RN AR R HER R R0/

Mefine U 01
fdefine L 02
Mdefine N 04
fdefine S 010
fdefine P 020
fdefine C 040
$define I 0100

extern char _ctype_ (]}

*deéine isalphalc) t({_ctype_+{cIb(U L))
tdetine isupperic) ((_ctype_¢1}{cIk_U)

Mdefine isloweric) ((_ctype_¢1)lclb L)

ddefine isdigitic) {(_ctype_+1)(cIE_N)

Mefine isxdigitic) ((_ctype_¢1){c&(_ M X))
Mdetine isspaceic) {i_ctype_+1)[c3b_S)

Sdefine ispunctic) {{_ctype_+1)(cd& P)

Hdefine isalnualc) {{_ctype_+1}{cIb(Ul LI M)
Metine isprintic) ((_ctype_+1}0cIbi Pt U LI ND)
Sdefine iscntrl(c) ((_ctype_+1){cI&_C)

Mefine isasciilc) {{unsigned) (c) (0177}

Sdefine toascii(c) ((c)&0L77)

APFENDIX F

JHHAR R R R AR R R R R R LA R R R H R R R R R R E R R R R R R R R R LR R R EE R R R0 0408/

/% 8/
it 00000 00 00 00 00 00000 00000 8/
i) 00 00 00 000 00 00 00 OO0 #
1] 00000 0000 00000 00 00 0000 #
1t 00 00 00 0600 00 00 00 L7
It 00000 00 00 00 00000 00000 &
1) i
1t SYNtax-Directed Editor (c) Copyright Decesber {982 ¥/
1% CAPT. Scott Edward Ferguson, USAF, AFIT 6CS-82D #
L] Nodi¢ied October 1983 #
/% CAPT. Michael L. McCracken, USAF,AFIT 6C3-830 #
It 7
1] CONPILER.C &

1% SYNDE systes cospiler entry point, To be linked with CONPILE.C #/
% and appropriate language specific cospiler routines %o produce +/
¥ d language specific compiler, 7
/% %
R R R R R S R L R R S S L LA R R R R L LR R R R S R A R R R0

#include “synde.h® /¢ systea global intormation structures &/
$include *types.h* /% production type definitions &/
3 extern /¢ source file intoraation ¥/
struct file_info src_infoy /@ in AST.C #/

char #noson, #bool_exp, %int_exp)
char #types [LAST_PROD_}

e T

AFPENDIX F

R I R et R I I L Iy Yy 2y

/% 4/
/¥ #din &
/e Entry point and driver for compiler, ¢/
It 8/
[HHIH I H I A M R H M R 0 0008/
sainlargc,argv)
int arges /% input arquaent count 8/
char fargvil); /% input argusent ptrs L
{
puts("COMPILER 11/11/83%)}
if large ¢ 2) /% check for source file nase &/
{
puts{"Unspacified source file.*}}
exit();
}
/% initialize 4/

it ((a_init{argvit]) == ERROR) 1! (s_initisrc_info.f_lang) == ERROR)}
exiti}}

conpilelly /% generate pseudo-code for interpreter #/

a_wrapl);
¢ wap()|

it {src_info.f_edit)
{
execl (*synde®, "synde®,arqvl11,2)4
puts(*Cannot access SYNDE.®)§
}
}

i 0

AFPPENDIX F

/|l.i|00i!lillll{!lOli900{!lilllllillillllllifil!l.ii!i!!ll!lllll’i!illiI

/%
/e
/%
/%
/s
/2
I{]
/¢
1]
/%
/%
/s
1%
/s
)
/%

00 00 00 00000 00000

00 00 00 000 00 00 00 00

00000 00

00000 0000
00 00

00000 00

00000 00 00 0000
00 000 06 00 00
00 00 00000 00000

SYNtax-Directed Editor (c) Copyright Decesber 1982
CAPT. Scott Edward Ferquson, USAF, AFIT 6CS-820

Modified October 1983

CAPT. Michael L. McCracken, USAF, AFIT 6CS-83D

CONPILE.C

SYNDE systea generic entry point and utility routines for

compiler use.

4/
¥
L 7
§/
Ll
L
Ll
#
L]
&
L1
&/
4/
L)
7
L

ll0!llli’lil”ll‘!!!!llll00l.llIQIllOiillillliiil!iill'lii{l0!0'00000690/

$include *synde.h*

finclude “code.h’

struct

code_word #code}

Sinclude "syabal.h*

struct

extern
struct

extern
Char

int

BoaL

sya_table tsyabol;

file_info src_infos

ttypes(l}

code_ptr,
sye_ptr,
errors,
level,
offset,
body_type,
ret_typs,
ret_Ist}

gerror,
serrar}

/% systea qlobal inforsation structures #/

/% code generation structures
/% pseydo-code

% syahal table structures
/% syahol table

/% source file data
1t in AST.C

/% node production types
/e in language specific cospiler

/¢ index of next code cell

/% top of symbal table

/% error count

/¢ current lexical level

/% current offset in level

/% current sub-progras type

/% return type from a function
/% return list érom a sub~progras

/% code table overflow error
/% gyabol table overflow error

129

&

&
&/

L7
L7

&/
¢/

L 73
&/
[7]
&/
s/
#/
&
7

&/
&

pb Lt o

AFPENDIX F

[R5 R4S R RS R RS HAR R HERE SRS R H A H R R REFEN MR GRS IR 0E00E/

/¢ 8/
It cospile &
/e Initialize compilation and generate code. */
It 8/

R T L T L L T e L L L L e T e e ittty Y

cospile(}

(
REG sizet /¢ code size in bytes &
char code_nane(20); /% code file nase &/
FILE #code_filej /% code file descriptor &/

int i}

errors = level = sya_ptr = code ptr = 0}
qerror = serror = FALSE}

/% allocate a clear space for code generation essory i
it {'{code = aalloc(size = sizeof (struct code_word)+WORDS)))
{

puts(®Insufficient eesory for code.')$
return ERROR;

)
/% allocate a clear space for syabol table memory 7
if {!{sysbol = salloc{sizeof (struct sys_table) ¢SYMBOLS)))

{

puts{®Insufficient sesory for syebols.®)$
return ERROR}
}
tor (i = 33 i (= 9 +4f) /¢ clear all eor markers 7}
it (src_info.f_sark(il)
clr_sark(src_info.d sark(il}i

goal (src_into.¢_root)} /¢ goal Ll

/¢ delete old code file and save new one 8
strcpy(code_nase,src_into.f_nase)}
strcat (code_nase, ".cod®)}
puts(*Code file » *)§ putsicode_nase}} putsi®.’}}
unlink (code_nase)$
it (lcode_file = crest(code_nase,0644)) se ERROR !!
wite(code_file,code,size) 's size i!
closaicode_file) == ERROR) (
fosrricode_filely
puts(*Cannot generate code file.*)}
return ERRORS
}
free(sysbol)} /% free sysbol table (leave code) &
return errorsj
3

130

AFPENDIX F

/2340000 40 0000000 000000 000000000 0000 0 00 R 0000 0000 20000000004/

It
/8
/e
it
/4
/e

collect

Collect the "set’ sysbols in 4 sibling list into the
supplied string. Returs ERROR if an unsatisfied and
unconditional set elesent node is encouatered.

o
L
1
Ll
8
8/

/TSR I N L O SR M N RO LS 00 0000000/

ist collect(node,str)

int
char

node}
tstr}

next}

next = son(node)}
for {33 (
if (value(next))

else it

it (enk_

sstree = valueinext)} /¢ transfer character
('chk_flag(next,OPEN)) (

tstr = 0}

return ERROR; /¢ unsatisfied uncond set
)

flag(next,RTHOST)) (

tstr = 0§

return SUCCESS; /¢ done

}

next = right (next}s

}

131

L 7]

&/

Ll

AFPENDIX F

538 RAR AR LR R R AR L PR AR AR AR NN RR AR R LS HH HH RN B R4S/

/t 7
1% cospare s/
% Conpare the tersinal 'set’ children of two identifier
¢ nodes. Return TRUE if equal. Return ERROR if an 8/
L] unsatisfied and unconditional set elesent node is o
L] encountered. 8/
/4 8/

JHTH LRI MO S HA S HHHE HHE H A O B R R R R S R U R R R R R0 000N/

int cospareinodel,node2)
int noded, /% node “pointers® s/
node2}

char id1{40],
id204018

if (collsct(nodei,id)) == ERROR i! collect(node2,id2) == ERROR)
return ERROR;

it (streaplidl,id2))
return FALSE;

return TRUE}

}
N e T T e T e T R T AR T A T T A T
/¥)
I nusber &/
1t Convert the tersinal ’set’ children nuseric values froa &/
it an integer node and return the unsigned nuseric value. &/
/% Return ERROR if an unsatisfied and unconditional set 8/
"t elesent node is encountered. 7
/8 &/

JAH IS M M R E T L H R M R R R 1O/

nusber (node,base}
it node, /¢ *pointer® to subtree 8/
basel /% nuseric base ¢/
{
RES accual /% accusulated value 8/
char cM /% digit tros set 8
it aent} /% sibling chain “pointer® 8
next = son(node)}
accus © 0f /% accusulate digits t/
for L340 ¢

if (tich = valusinant)) &k 'chk_flag(next,OPEN))
return ERRORS /¢ exit i¢ unsatisfied wnconditional sets/
it (fsnusaric(toupper(ch) base)) /% test base validity «/
accue = accus ® base ¢+ ((ch(s'9’) 7 ch="0" ¢ ch~33)}
it lchk_flaginent,RTHOST))
return accusi
neat = right (nent)}

132

APPENDIX F

}
}
JHR IR A A SR H R R R HH L R R0/
1% 7
/t qen &
/8 Gsnerate a pseudo-code instruction or label, Return &
1] the address of the generated word. &
/e i
[HE I M I R S R 8RN/
qen(opcade, opl,0p2,node} \
int opcode, /% psaudo-instruction op-code 7
opl, /% operand | 7l
op2, /% operand 2 #/
nodes /% node responsible for code &/
{

switch (opcode) {
case _LAB: codelcode_ptrl.c_label = TRUE{

case _NOOP: return code_ptr}

default: i¢ (code_ptr >s NORDS) {
it ('gerror) (
puts(“Code table overflow.”);
+4arrors;
gerror = TRUE;
}

return code_ptr}

)
codelcode_ptrl.c_opcode = opcodei
codelcode_ptrl.c_opl = opl}
codelcode _ptrl.c_op2 = op2}
codefcode_ptrl.c_node = node;
return code_ptre+}

}
}
[N HH M H I/
/% L
/e fix &
{4 Fin a forward reference by satting opl of the jusp L
I8 instruction at the specified address to the current &/
e code_ptr. 7
/e &
P T T Y T T T T Ly e LT e T e L T L 1Y)
fix(addr)

int addry
{ /% #ix jusp and mark label 8/
codelcodeaddr).c_opl = code_ptrl.c_label = TRUE|
)

_——

AFPENDIX F

/1A RREE AR SRR R R RH AR RO R R E RS R R R A H R R R RN R REC LA R R R R RRE 0444/

/% L7}
/% tind 7]
It find a sysbol in the syabol table. Return the syabol «/
1] table index or ERROR if not found. s/
/8 L 7]
JH R AR R R L HEH RS S R R R R EHEHH L AR HE S HE R SRR R LR HHE RN/
tind(node)

int node}
(

RES i /% syabols index 7

for (i = synptr § i § --i)
if (coapare(sysbol(il.sya_node,node} == TRUE)

return i}

return ERROR}

}

JHE R E AR LR R A L HE H LR E R R SR A RS DI S R0 50 3455000084
/% 17
/% place &
1t Place a new itea in the syabol table. Return the nes ¥/
/2 syshol table index. ¥
/% &/

/SRR AR EH S IR R AR RS HHH R H R R E R A F R DR H R R R R H 041004/

it place(node,type)

int node,
type§
{
if (sya_ptrel >» SYNBOLS) (/% lisit syabol count 7]
it {'serror)
puts("Sysbol table overflow.”}
serror s TRUE;
seeroarsd
3
)
olse (

syebol [++sya_ptr).sya_node = nodel
syshol(sya_ptrl.sye_level = levels
sysbol sys_ptrl.sys_adir = offsete+)
sysbol{sya_ptrl.sys_type = types

)

retura sya_ptr}
}

. o . e 5 - S NI

APPENDIX F

iiilllIlll.iill.ill.lli.ll!.lllllll!llllillIQQCI.lll'lli'ili}lliililllll/

1] l
/3 error +/
/¥ Nark the specified node with an error and output the &/
1] supplind error eessage. Return TRUE when all error &/
1 sarkers have besn used. ¥
/e L7

Illlll.QlllilII{!GIID!’!I!O!'QG!QC!6lllll!!|00000!0l.i.i!lli.iliilli.ll!I

int error(node,str)

int node} /% node in error &/

char #str /8 prror aessage string &
{

REG i /% sarker index %/

/¢ find the first open error marker or reuse one with the sase node ¢/

for (i = 53
i (=8 &k src_into.f_sark(i) & src_info.f_sark(i] 's nodes
i)}
puts(*ERROR MARKER °)j /% nessage 7]

putchar(i+’0’}} puts(®:)
putsistr)¢ puts(®.*);
it tsrc_info.f_sarkii)

; tlr_sarkinode)} /% clear any previous sark #/
k. set_flaglsrc_info.f_sarklil = nade, NARK) § /% set error aarker &/
3 if tix9

1 . {

; puts(*Error lisit exceeded.’)s
‘ retuen TRUES
{ }

‘terrors)

return FALSE}

}

135

APFPENDIX F

SR E R LR AR R R R R AR AR R R R R R R R H R R AR E R RN R MR HER R R R ER R0/

/% &/
It node_type 7
/% Return node type of the node specified. ¥
14 8/

JHALHH R R S F R A R R SR R RS S R R R R R R R R S HER AR RER R REY/

int node_type(node)

int nodef

{
RES] /¢ types index X
int locy |

loc = s_ptrilink(linkiprod(node)})); /# string location is in table ¢/
for (i = 0f typeslil; ¢+i)
i (types(i) == joc)

return i}

return ERROR} /% not found U
}

FHHRI IR R R A L B AL R LR H A L R R R L R HEA LR LA R R AN 4008/
i1} &
1] 111 types 8/
/e Fill types array with string locations in syntax ¥
e description corrasponding to strings in arqusent. #/
/3 8/

/3545 AR SRR LS MR S BN E R R R H R A A RS HRHH R A SR E R R R E RS EEE/

#111_types()
{

register char #s§

int it - /¢ types index i
for (i = 03 typeslili +4i) { /% stop at 0 entry)
s = g ptrilinki(®)); /¢ location of first string 4/
itputs(typeslil}y sake this into a non cossent to +#ind errorss/

/% in the types array. L

f#lush(stdout)s

while (strcapis,types(il}) { /# while strings not equal 4
it (s »» OXFFFF) { /% error if no aore in SOF ¥
puts{*Type-fill error: *)§
puts(typeslil)y
aiti)y
)
while (#ges) § /% $ind next SOF string ¢/
}
typeslil = o) /% type is loc of SDF string &/
}

AFPENDIX F

tinclude ‘adal.h®

/400 AR08 AR AR AR R HER RS H R R H A R R AR E AR DR R A RAR R4S/

/e &/
I old_ident(ifier) 4/
) &

/05 AR F R R AR H R AR R R R R R A MRS R R R0 SRR R H R R A RS 44130 H0Y/

int old_ident (node)
int node}

{
RES 1]

it ({i = ¢ind(node)) 's ERROR)
return i}

it (error(node,*undeclared identifier®))
return ERROR;

return place(node, TYPE_VAR)}

)

[HHAE RN M BRI ML H A S R H R N LA R A LA R R R R 0 00488/
I 7]
1] new_ident(ifier) 17
I Undeclared identifier search, Return ERROR i the ¥
it identifier is found in the sysbol table at the current ¢/
/4 level, otherwise enter it as a new syabol and return &/
It the sysbol table index. &
/e 8/

/48RRI HHH H I S E RN R R L R SRR R R L R R0 R0 841/

int new_ident {node)
int node}
(
RES i /% sysbol table index &/

/% gust not be at same level &/
if ((i = ¢ind(node)) '= ERROR & sysbol{il.sya_level == lavel)
i¢ (error(node,"identifier already declared®))

return ERRORS
return placeinode,0)} /% place new sysbol &/
}
(S E R R R S L S R RS A L 1 AR R 0/
1t &/
/t integer &
" 8

JHEB I I R S H R SR R R L L HE L L R R R A R RS 4R 0/

int integer (node)
int node}
{
return nusber (node,10)§ /% base 10 nueber 2

AFPENDIX F

}

L Ty T Y e T r T Tr T L TE R R I T TY P T P Py Y Yy e Ty
i]
1 n_exp ¢/
1% 8/

/43R RS R R AR LS LA R R R RERE S H M RHHH HH HER R R L 1000 E0Y/

int n_wxp{node)

int node}
{
return exp{son{node)); /% (expression} i
}
[I T R R R S R R R 40
/e &/
/e dec_nua 4/
I 4

[EREE N AR HR SR R HHH HHE EA R HHH AR L HE R HEE R SR R HE 0008/

int dec_nus(node)

int node§

{

return inteqer(son(node))}

}

[SR R R S L RS H R A Y/
i) 8/
/% aul_op 7]
/t &

JHATE IR R R R A4 R H R R R R HE HE R R H R R R R R RS R 004/

int sul_opinode)
int nodes
{
it ('son(node})
it {errori{node,noson))
return ERROR}
else
return ML}
switch (node_type(soninode)))
{
case ML _: /4 "8* Ll
return ML}
case DIV_: a0 &/
retyrn DIV}
case REN_: /% "REN® 4
return _REN}
case NOD_: /% *NOD* L
return MO0}
)

}

e

HRFFENDI W

/lQliii.iiliiiil.iillllilllliililliIilll&ii.l!li!lii!illliililiiilil/

I &/
I prisary #
it i

/llll!lll!’liQOlilll.l’ll!l.!lillii.illl.li.llllili|00|0!0|lli|’00!!/

int prisary(node)

int nodes
{

REG nexts

int i

if (*{next = soninode)))
it (error(node,noson))
return ERROR;
else {
gen(_LIT,i,0,node)}
return TYPE_INT;
}
switch (node_typeinext)) ¢
case DEC_NUM_: /% (decinal_nuaber) #
it ((i = dec_nuainext)) s= ERROR)
return ERRORY
geni _LIT,i,0,next}y /% load literal &/
return TYPE_INT}
Case NAME : /% (nase) &/
it (i = nase(next)) == ERROR)
return ERROR}
if ("(sysbolli).syn_flags &k TYPE_VAR)) /8 VAR or CONST &/
if (error(next,’sust be constant or variable nase®))
return ERROR}
else {
gent_LIT,i,0,next)
return TYPE_INT}
}
gen{_LOD, level-sysbol (i).sys_level,sysboilil. sys_addr,next)}
return syabollil.sys_types /¢ load variable 4/
cose N_EIP_: /% (nested_exp) &/
return n_expinext){
case CMAR_LIT_:
it {1 = char_lit(next)) == ERROR)
return ERROR;
gen(_LIT,i,0,next);
retern TYPE_CHARj
case DOOLEAN VALUE_ @
it (il = bool_val (next)) as ERROR)
raturn ERROR;
gon(_LIT,i,0,next)}
return TYPE_DOOL|
cose F CALL_ @
return func_call (next)y

139

ag ML a0 g

APFENDIX F

}
)
JHR08 RS0 M HE R EARE S E S H AR AN IR HH A RO Y/
1% &/
/e character literal &/
/% &/

I000l!l.!.l'...!ll.lilill!..&i'i.l.000lQIClIlillili.illlllllll!!illl!/

int char_lit(node)
int nodej

{
int next}

next = son(node)}
if (chk_flaginext,OPEN))
if (errorinext, character needed®))
return ERROR}

else
return 0§
else

return valueinext)}
}
JEER AR AR A E R R H AR E R H R S M R RO S R S E R PRI R R 4R RS/
14 #
1% boolean value &/
I 'Y

/QOQQQOOICQQOllGIOl0!!’0{600000000000!.0000!GliilQllli!&i‘.iillil!!l!/

int bool_val (node)
int nodej

{
int nexts

it (*(next = soninodel})
i$ (error(next,noson))
return ERRORS
nlse
return TRUE}
if (node_typeinext) == TRUE)
return TRUE}
else
return FALSES
}

e Tl WS AR ms Bn i Evemse. o Eteasenny iy alrin-2e - ity R

AFPENDIX F

finclude ‘adal.h®
JHER LR R R R R R H H R R R SRR R B R R R HE R R E R S R R H RS 4/

/e 8/
1t rel_op #/
1t ¥

[L AL R RS P R R R S HH R H R R S R H S R A R R R AR R RS/

int rel_opinode)
int node}
{
if (!son(node))
it (error(node,noson)}
return ERRORS
else
return _EQUs
switch (node_type(son(node))) (

case EQU_: /& *=* &/
return _EQU;
case NEQ_: LY %/
return _NEQ;
case LES ! I #/
return _LES;
case LEQ_: /¢ "(=® #/
return _LED)
case 6RT: /e ¥
return _GRT}
case BEQ_: /8 *)n® 7
return _6EQ;
1 }
k| 1)
; JHE I R R R PR R R R N8/
. /e &/
/4 add_op 4/
1] &/

JHEEERERE 0 HRH R SR EHHEE R R R H R EA R ER R R A H HHE LR R R HE RO EE/

&S int add_opinode)
2 int node}
% {
it (‘son{node))
it (error(node,noson))
return ERROR)
else
3 return _ADDY
: switch (node_type(soninode))) (
1 case PLU_: 18 %0 7]
return _ADD;
tase MINUS : e 0= #/
return _SUBS
}
)

141

AFPFPENDIX F

[EESEE SR E AT T MR AR E AL R R RO R R R R R R ER R LR HE R R R E HHRRRRS13E/

1% &/
/4 factlor)s Wl
/% Y,

JE0R R AT HE HEHI A R HE R R HE AR R RO A R SRS R H M R R HH R HE RS/

int facts(node)

int nodes
{
REG next}
int op, /% sultiply aperator 8/
types
it (iop = sul_opinext = soninode))) == ERROR) /# (sul_op) ¥
return ERROR{
it ({type = factor({right(next})) == ERROR) /% (factor> #/

return ERROR{
it (type '= TYPE_INT}

{

error (next,integer type expected®))

return ERRORS

3
geniop,0,0,next); /% aultiply operation &/
return types
}

583 R 4 R 4R E R HER R E R AL R RN AR H R R R HAR A R R H IR R R R AR RRRR A0S/

/3 &/
) rel (ation)al #/
I» &

(3RS R RN RHARRRH R AP L E RS LA HER R RN H AR H R R R R E LA R ER AR L AR RA0Y/

int relal (nodel
int node}
(
REG nexts
int 0p, /¢ relational operators ¢/
type}

if ({op = ral_op(next = son{node))) == ERROR) /% (rel_op) Ll
return ERROR;

if ((type = s_exp(right(next))) == ERROR) /% {sinple_exp> &
return ERROR}

gen(op,0,0,next) /¢ relational operation &/

return typej

)

142

Al il T e
_. DRI SR

4&51\. %

APFENDIX F

[HEREE R R R AR R H R RS SR ER R FERRH AR R E R AR HEEAERREREREERREE RS/

{¢ &/
/¢ teras &/
/% 7]

/AR S AR HE R HHHH R R R R H I H A4S E R HE LR E R RS E S H RS R R 40004/

int terasinode)

int nodes
{
REG next;
int op, /% adding operatar &/
types
it (lop = add_op(next = son(node})) == ERROR) /¢ (add_op? 8/
return ERROR;
if ({type = ters(right(next))) s= ERROR) /% (tern) 8/

return ERROR;
it (type 's TYPE_INT)
{
errarinext, integer type expected®)|
return ERROR;

}
gen(op,0,0,next)} /¢ adding operation #
return types
3)
E , [0 R AR A LR O LA T D LA RO R R R B R R R R R 8/
I &/
/e tera #/
g 14 4

/IR H M S H R R S LR SRR R R R L R R H R S R L R H R E 0004/

2 int tera(node)
& int nodef
4 {

’j REG next,ltype,rtypel

it ({ltype = factor(next = soninode))) == ERROR) /# {$actor) &/
return ERROR}
while (‘chk_flag(next,RTHOST)) /¥ {((factors)) &/
it (‘chk_flaginest = right(next),OPEN))
it ((rtype » facts(next;) ss ERROR)
return ERROR;
else if ({ltype '= TYPE_INT) 1!
d i {rtype !s TYPE_INT))
. {

}7 error(node, “type mismatch. operation not defined®)s
j return ERROR}
:)
b, return 1types
‘ }

AFFPENDIX F

/458004 E R R HE AN SRR EH RN R AR R R HAR RS H RS R RR R R4 ER SRR T8/

/% &
/e factor 4
/4 #

JEHIR R R M H I AR SR A H R HH SRR B AR H LR H R S LR R0 E R0 00 80000/

int factor(node)
int node$

{

int next}

if (!{next = son(nade})}

if (errorinode,noson))
return ERROR}

else

{
gen(_LIT,0,0,n0de};
return TYPE_INT}

}

switch (node_type(next))

{

case EXP_PRINARY _ :
return exp_prisinext)}

case ABS_PRIMARY_ :
return abs_prim(next);

case NOT PRIMARY_ @
return not_pris(next);

) , |

144

o

AFPPENDIX F

finclude ‘“adal.h"

52 REEHE SRR ERE SRR 1SR RSN EFHEREREA SRR RS HREE R RN EERENEE/

T o
e It u_op 8/
y‘, -
: 15 &/
JSH I M R
int u_op(node)
int nodes
{
it (!son(node)) ‘
- if (error(node,noson))
3 return ERRORS %
. else :
return _NOOP)
switch (node_typeison(node})) (]
case PLUS_: /¢ "* #/ :
return _NOOP;
case MINUS_® /8 *=* 8
return _NEG}
}
}
JHRS AR R BRI LA R E A L R A H A R R A R S S RS 108/
2] Ll
it or_rellation) Y]
1] Y
3 ‘ [RIS S AR L S HH R RV R S A R 0/
‘ int or_rel (node)
int nodef
1 {
int types
r it ({type = relation(soninode})) == ERROR} /8 {relation) &/
return ERROR}
; it (type 's TYPE_BOOL)
i (
error {son{node) ,bool _exp)}
return ERROR}
)
gen{(_OR,0,0,node) § /% or operation 7
return types
}
§
i
' 145

AFPENDIX F

[SRR RSB0 044 ML EER RO RN LA LR AR AR R R AR R RO IR RS AR08/

i) ¥
1] w_clause &/
1] #

/SRR AR R M HE SRR A R R A HEH RS R R0 S 1M L IR H R R A RS/

int w_clause(node)

int node}
{
return expisoninodel)} /% {expression) &/
}
[H A LA H R AR HHE A HH R A R R A R 1000/
/e L7
/8 and_rel (ation) 8/
/% &/

R ERER RS R EHHE R AR L RN RS HH A R RO E E RR R HE R RN R R R AR RS E 4054/

int and_rel {node)
int node}

{

int types

if {((type = relation(soninode))) == ERROR) /% {relation)
return ERROR}
if (type '= TYPE_BOOL)
(
error (son(nade) ,bool _exp)}
return ERROR}

}
gen(_AND,0,0,node) § /¢ and operation &/
return typej
}
[R HE R R AR L R AR A RS/
1] #
/% and_then_rel (ation) Ll
/e &

/HEIH I HH N HIIH N HH I T R RN R R R/

int and_then_rel (node)
int nodes

{
int ltype}

i¢ ({1type = relation(son(node))) == ERROR) /% {relation) ¥
return ERROR}
i$ (ltype = TYPE_BOOL)
i¢ terror(soninode),bool _exp))
return ERROR)
return ltypes
)

146

e g b TR A e e e - -

-

AFPENDIX F

JHRERER AR R R RS E R R R H RN R R R HE R AR 5201 04/

/% 17
1] or_else_rel (ation) &/
1% L)

8344 R HE A A HH S AR HE SRR HEHHH LR O RS H R R R R0 008/

int or_else_rel(node)

int node}
(
int ltypey
if ((ltype = relationisoninode))) s= ERROR) /% (relation) &/

return ERRORS
if {1type ‘s TYPE_BOOL)
if (errorisoninode) ,bool sxp))
return ERROR;

return ltype}

)

[N R S A R H R R R R R L B A R R R0 R 08/
/% 8/
/h xor_rel (ation) 7]
/& &/

JHSHI AR MR RN R AR A R R E R R R H S R L R R LR 00048/

int xor_rel (node)

int nodes
{
int Itypes
if ({1type = relation(son(node))) == ERROR) /¢ {relation) &

return ERROR}
if (ltype !s TYPE_BOOL)
if (errorison(node),bool_exp})

return ERROR}

gen{_XO0R,0,0,n0de)} /% xor operation &/
return ltypes

)

L L L L T T T ey T T I T T e e T e e vyl
/e 8
1] rell{ation) part 8/
1 &

110 A A M M H L SR A LA L A L R MO H O AL O 0/

int rel_partinode)

int node}
{
return relal (son{node))} /% (relationsl) &
}

147

AFPPENDIX F

/lllll.l.ilIQlQI!!!OIIQ.’Q!Ql.il.ll.liilii.0609000!60000!.!0!00!00!0/

/4 ¢
It s_exp 8/
/% #/

A A T R R R R 0/

int s_exp(node)

int nodes
{
REB next}
int op, /% unary op-code &/
types
op = _NOOP}

if (node_typeinext = son(node)) == U_0P) (
it ('chk_flaginext,OPEN))
it ({op = u_opinext)) == ERROR) /% [Cunary_operator)] #/
return ERROR}
next = right(next)}
)
it {{type = terainext)) s ERROR) 1% (term) &/
return ERROR}
if ((type !s TYPE_INT) &k
{op !'= _NOOP))
{
errorinext,int_expl}
return ERRORY
}
gen(op,0,0,s0n (node)) § /% unary operation #/
while (fchk_flag(next,RTNOST))
{
it {type 's TYPE_INT)
if (error(next,int_exp))
return ERRORS
¢ (chk_flaginext s right(next),OPEN))
if titype = teras(next)) ss ERROR) /% {(teres)) Ll
return ERROR)

)
return typel
}

APPENDIX F

[3R3 000 AR A AR R A A L H R HE R R R AR R R R R R H R R R R F R R HH U 6648/

12] &/
/e i_clause 8/
I ¥

H R R R S S I R R SR E R SRR AR R AR R R R R HEE R £ R B0/

int i_clause (node)

int nodej
{
return w_clause(soninodel }§ 1+ (while_clause) 8/
}
JRREIEEE A SO O R R R R L LS R H R L LR S R R R R0 E/
It]
1 else_part Ll
1 &

[HEHER R LR ST HR S A RPN H R R R R R H RS S A G R H 1 E T 000/

int else_part(node

int node;
{
return seq_of_stats{sonincde}}} /¢ (seq_of stats) 8/
}

149

APFENDIX F

finclude ‘*adal.h®

R R LA R R R R R E R L HR R R R R R R AR HE R E R R R 02 000 41004/

1% 8/
It elsif_part 8/
1% ¥

R g L T e L e e e T L LI T Yy

int elsié_partinode)

int nodef
{
REG nexts
int labelt, /% label address storage ¢/
types

if ((type = exp(next = soninode))) == ERROR) /+ (expression) #
return ERROR}
if (type 's TYPE_BOOL)
if terror(next,bool_uxp))
return ERRORS

label) = gent_JPC,0,0,0)4 /¢ jusp to next else 8/
if (swq_of stats(right(next)) == ERROR} /¢ <seq_of_stats) ¥
return ERROR}

return labell}
}

APFENDIX F

/HH I R AR AR F R R R R R R R R R R R A R RO S H A B R B R 04/

1% #/
/t and_cosp 7
/e L7

JHHA R E R SRR SRR RS RS EHH S R H R R R R A R H S H R4 3R H R 40044/

int and_coap(node)
int node$

{
REG next,ltypel

it ((Jtype = relationinext = son(node))) == ERROR) /% C(relation) ¢/
return ERROR;
it (ltype '= TYPE_BOOL)
i (error(son(node),bool_exp))
return ERROR}
while ('chk_flag{next,RTNOST)) /% {Cand_rel)) &/
if ('chk_flag(next = right(next),OPEN))
it ({1type = and_rel (next)} == ERROR)
return ERROR}
return ltype;

}

FORERRRRR MR DR EAR R RO ORI MR LI R AR RO A R H A R D H R R R R AR 00/
1] &/
4] ar _comp 4/
1t #

[0 R HE R RHE R M A HE R R M HH R HE HR R R E R R R R S S A S R 4R 3R/

int or_cosp (node)
int node}
(
REE next,ltypel

it ({type = relation(next = soninode))) == ERROR) /% (relation) ¢/
return ERRORS
if (ltype != TYPE_BOOL)
i$ (error(son(node) ,bool _exp))
return ERROR;
while (lchk_flaginext,RTNOST)) /8 (Cor_rel)} &/
if ('chk_flaginext = right (naxt),OPEN))
i ((1type = or_rel(next)) == ERROR)
return ERRORS
return 1typel
)

151

- o

APPENDIX F

[HRR0R L E R4 R AR AR LR LA E RGN HH R R AR R R R L RN L R DR R R0 434/

1] ¥
] and_then_cosp ¥/
14 L0

/1R R LR R R AR R R R R M R R R A R R R AR S R O R R AR R R R 40044/

int and_then_coep (node)
int node}
(
REG next,1type,chain,label}

i¢ ((1type = relationinext = soninode))) == ERROR) /¢ (relation) &/
return ERROR}
it (ltype !'s TYPE_BOOL)
it (errorison(node) ,bool_exp})
return ERROR}
chain = label = gen(_LAB,0,0,next)}
while (‘chk_flaginext,RTNOST)) /% (Cand_then _reld} &
it ('chk_flaginext = right (next),OPEN))
{
label » codellabell.c_op! = gen(_AND_THEN,0,0,next!;
it ((Itype = and_then_rel (next)} == ERROR)
return ERROR}
}
do
{
label = codelchainl.c_opls
fixlchain)y
,)
t while (chain = label)y

return ltypes
}

B T ET T e - et

e e Tty o

AFPENDIX F

/lilflﬁillliii0li'*iillllliiililiiifiiill|llii!fiI!iii!lili!illilliii/

/4 &/
/e or_else_comp +
/4 &/

IQQIQQllll!ilililililiilllilillllllllliilllilil!!liilii’i'lliiililill/

int or_else_cosp(node}
int node}
{
REG next,ltype,chain,label}

it ({ltype = relationinext = son{node))} a= ERROR} /% Crelation)> #/
return ERROR}
it (ltype '= TYPE_BOOL)
if (error(son(node),bool _exp)}
return ERROR}
chain = label = gen{_LAB,0,0,next);
while ('chk_flag{next,RTNOST}) /¥ {Cor_eise_rel)) &/
i€ ((chk_flaginext = right(next}},OPENI)
{
label = codellabeld.c_opl = gen(_OR_ELSE,0,0,next);
it {(1type = or_else_rel (next)) s= ERROR)
return ERROR}
}
do
{
label = codefchainl.c_oply
tix(chain);
)
while (chain = label)s

return ltypes
}

153

e A CSZVTE. YN ot e o

<

AFPENDIX F

JH R EER R E A R H R R S AR R R R R P A R R R R R R O R R R R R H R E/

/¢ L7
/e Xor_coap #/
1% ¢/

P I T e T I I T e e L e L L e e e v

int xor_cosp(node)
int node}

(
REG next,ltype}

if ({l1type = relationinext = soninode))) == ERROR) /# (relation) &/
return ERRORS
it {ltype = TYPE_BOOL)
it (error{son(node),bool _exp))
return ERRORY
while ('chk_flag(next,RTNOST)) /¢ {(xor reld} &/
if {'chk_flaginext = right(next),OPEN))
if ((1type = xor_rel{next)) as ERROR)
return ERROR;
return ltypel
}

[HHE ISR R MR H A H AR A RS LRSS H N E L H R R R R E R LR R R0 R H R0 0 0 002/

/8 &/
) relation &/
/¢ 7

/HH AR R H R HE R R AR R AR R R FH E R A H R H R R R SR04 00/

int relation(node)
int nodel
(
REG next,ltype,rtype}

if ({1type = s_exp(next = goninode))} == ERROR) /% {s_expression) #/
return ERROR}
if ('chk_flaginext,RTHOST) &b 'chk_flaginext = right (next),OPEN))
{
i {irtype = rel_partinest)) == ERROR} /¢ (<relation_part)) ¢/
return ERROR}
if (itype != rtype)
{
i (errorinext, types sust satch®))
return ERROR{
}
else
return TYPE_BOOL|
}
‘ return itypel
)

APPENDIX F

[EEER AT R RS R B R AR R R R H S R HF R R R R R AR R R R R LR R R EE/

/% &/
/4 naae &/
/% &

/1R R E A L HH R S HHH A A R R RN E R HEE RS HEH R R LR B R RERARE/

int naae{node)

int nede;
{
return old_ident(son{node)}} /% (old) Cidentifier) +
}
[R I L R E R R R R R R R R 0/
/¢ ¢/
1] loop_stat ¥/
1) #

RS EERSEES AR SRR E R AR S E R EHERREFRRE RN ERERRERIE R RO R AR EEEER/

int loop_statinode)

int node}
(

REE next}

int labell,label2} /% label address storage +/
label! = gen(_LAB,0,0,0); /% start of loop #/

label2 » -4
it (node_type(next = soninode)) == | CLAUSE_) (
it (tchk_flag(next,0PEN)) (

if {i_clause(next) == ERROR) /% [iteration_claused] #/
return ERRORS
label2 = gen(_JPC,0,0,0)3 /% jusp to exit loop &/
}
next = right(next)}
}
if (seq_of_stetsinext) == ERROR) /% (seq_of_stats) #/
return ERROR;
‘ gen(_JMP,label1,0,0)} /% jusp to loop start 8/
N if (label2 's -f)
; $in{label2)y /% ¢ix juap to exit loop &/
3 return SUCCESS;
i)
-3
155

T o

AFPFENDIX F

JEH AR R HE AR AR R HECER RS LG R R R ERRRREH AR RRARASERNHORREERA LR M REA 04/

/¢ &/
: /* if_stat 8/
' 1t 8/

/3RS R LR R4 4 S H 4 HE R EHERE RS IR LRI HE R AR AR SRR R LI R4S/

int if_stat(node)

int node}
{
RES next}
int labell,label2,chain, /% label address storage &/
types

if {{type = axpinext = soninode)}) == ERROR) /¢ {expression) &/
return ERROR;
if ttype !s TYPE_BOOL)
it (error{next,bool_exp}))
return ERROR}
labell = gen(_JPC,0,0,0)} /% jusp to else 4/
i¢ (seq_of_stetsinext = right(next)) == ERROR) /¥ (seq_of_stats) ¢/
return ERROR}
chain = label2 = gen(_INP,0,0,0); /% jusp past if_stat #/
while {!chk_flag(next,RTNOST) &k node_type(right (next)) == ELSIF P_)
if (lchk_flaginext = right(next) OPEN)) { /% (Celsif_part)) i
fix{labell); /% fix jusp to else #/
it {{labell = elsif_partinext}) == ERROR)
return ERROR}
/% chain locations of jump-past-if_stat instructions ¢/
label2 s codellabel2l.c_opl = gen(_JNP,0,0,0)}
}
fix(labell)}
it {'chk_flaginext,RTNOST))
i¢ ('chk_flaginext = right(next},OPEN))

if lelse_partinext) == ERROR) /% [{else_part)) #/
: return ERROR;
¢ do {
1 label2 = codelchainl.c_opl}
4 finlchain)j /4 fix jusps-past-if_stat &/

} while (chain = labei2}s
return SUCCESS
}

=
o

2 SePA -

APFENDIX F

finclude “"adal.h*

JEAERA SRR SRR R R C AR R R R R H R R SRR R R R RN R H R R RN R R HEF R R0/

1t &/
/t proc_call 4/
/% &/

[HIA RS EEEEH LR R H R R R R A R R H R R L E I R R R R R R AR E R 40048/

int proc_call (nodel

int node}
{

REG next}

int sys} /% syabol table index #/
if ((sys = paae(next = son(node))) == ERROR) /% (nase) &/

return ERROR}
i4 (syabollsya).sys_flags Lk TYPE PROC) /% aust be procedure name #/
if lerror(next,"sust be procedure naee®))
return ERROR}
else
return SUCCESS}
gen{_CAL,level-syabol(syal.sya_level,syabol [syal.sys_addr,next);
return SUCCESS}

)

ORI AR R H R R AR R R B R R R R R H RO R U R R R R R AR R 05808/
1] &/
/e ident(ifier)s &/
It} 7]

/4R AR R HERERE R R R R HE RO HE RS R H AR R R EH A LA SRR HEE 103/

int identsinode)

int node}
{
return new_ident (son{node})} /% (new) Cidenti-i~=) #/
}

o Ll e TR

'

ARPENDIX F

JHEE4EEHRERASERERH AR LR R R R IR ER MR RO R R RS HE R R AR E RS R RRRER IR/

1% ¥/
4 alssignaent) _stat #/
/¥ #

JEEH RIS HH RS I P H T I R 8/

int a_stat(node)

int node;
{
RE6 next}
int Y8, /¢ syshol table index #
1type,rtypes
if ({sym = nase(next = soninode))) == ERROR) /% {nase) 4/
return ERROR;
if (!(sysbollsyal.sys_flags &k TYPE_VAR)) /4 syst be VAR &/

if (error(next,"sust be variable nase"})
return ERRORY
if {!(syabol(syal.sya_flags &k TYPE_CONST))
i (syabol(syml.syn_flags &k TYPE_INIT)
it (errorinext,”constant initialization allowed only once®})
return ERROR;
1type = syabol(syal.sya_type}
if (irtype = expirightinext))) == ERROR) /% (exgression) ¢/
return ERROR;
i+ (ltype != rtype}
if (error(node, "types aust match’}}
return ERROR}

gen(_ST0, level -sysbol [syal.sye_level ,syabol [syn].sya_addr,soninode))}

return SUCCESS;
}

-

AFPPENDIX F

JHRE AR SRR ERREE R R RS R E R R R HR SRR A E RN ER R HRH LR R SRR RN Y/

1] ¥/
/t explression) 4/
/% &/

JHRR R R SR IS D R I H R R R L R R R R R H R B E 1R 144/

int exp(node)
int node}
(
REG next}

if {!(next = son(node)})
if (error (node,noson}}
return ERROR}
else
return SUCCESS)
switch (node_type{next)) {
case RELATION_:

return relation(next)} /¥ {relation) #/

tase AND_CONP_:

return and_comp(next)} /% (and_comp) ¥/
case OR_CONP_:

return or_cospinext)} 1% Cor_comp) &/
case AND_THEN_COMP :

return and_then_cosp(next)| /% C(and_then_comp) #/
case OR_ELSE_COMP_:

return or_else_coep(next}{ /¢ Cor_alse_comp) #/
case JOR_COMP_:

return xor_coep(next)} /% (xor_cosp) &/

}
)

159

N S A e I A S il

imtindiies,

AFPENDIX F

/Iii!ilil'illillliiilll0*"illli.iillii!'!lliill'Qiillflllliililll/

/% &/
/4 sub(type) ind{ication) 4
1] 8/

/ A N R LR S S R L R 40 M R R 04 /

int sub_ind(node)
int node}

{

int next,sys;

if {!(next = son(node)))
it (error(node,noson))
return ERROR}
else
return TYPE_INT}

switch (node_type(next))
{

case INTEGER_:
return TYPE_INT;
case BOOLEAN_:
return TYPE_BOOL)
case CHAR_:
return TYPE_CHAR;
case [DENT_:
sya = old_ident (next)}
if (!(sysbollsyal.sym_flags Lk TYPE_TYPE))
if terror(next,*type nase expected*))
return ERROR;

else
return TYPE_INT;
else
return sysbollsyal.sys_type;
)
}

160

AFPPENDIX F

[HEH R R R RS R R R R H R R R R R SRR R R R H R R R R SR 0004/

1] #
it s(isple) stat Lz
/* &f

A L A R H H R R R S S S S R R RO R H R E 044/

int s_stat(node)
int node}
(
REG next}

if (!{next = soninode)))
it (error{node,noson))
return ERROR}
else
return SUCCESS}
switch (node_typelnext)) (
case A_STHT ¢
return a_stat (next)}
case P_CALL :

/% Cassignaent_stat) &/

return proc_call (next)} /% (proc_call)> &/
case [F_STNT_:
return if_statinext); /% (it _stat) 8/

case LP_STHT ;

return loop_stet (next)}
case RET_STNT_ :

return ret_stot(next);
case COMMENT_ :
case NULL_STHT_ !

/% (loop_stat) &/

breaks
}
}
JHPH N MR S AR H R H R E S L E HEE R DS HH 0 S H 008/
1) s/
1 initial &
It} 7]

(SRR HRO LA M R T A H A LA D LR R L R R R4 00488/

int initial (node)

int nodef
(
return exp(son(node))} /% (expression) &/
}

161

e

e

APPENDIX F

AR R R RAE AR R REREERESHH AR LR RS R E R R R SR REP S EE R R RS EEE/

1% #
It obj(ect) _decl i
1% 8/

UL I I I e L L R e L L T e I e R T Y

int obj_decl (node)

int node}
(
RES nexts
int stype, /¢ type of variables declared
type, /% syabol table flags 4/
strty /¢ tirst syabol table entry &/

strt = gya ptr ¢ |}

it tid_list(next = son(node)) == ERROR) /% Cid_list) 8/
return ERROR;

type !s TYPE_VAR;

it (node_type(next = right(next)) == CONST) (/# [“constant*]
it {'chk_flaginext,OPEN))

type = TYPE_CONST;

next s right(next)}
}

t¢ (stype = obj_typainext)) == ERROR) /% (object_type) &/
return ERROR}

if Clehk_flagnent,RTMOST) &k 'chk_tlaginext s right(next) DPEN)) {

it tinitial{next) 3= ERROR) 1% [Knitialdl W
return ERRORY
else
type i= TYPE_INIT}
}
tlse
{
gen(LIT,0,0,naxt)} /¢ no initialization, use 0 &/
}
sysbol (strtl.syn_type » stypej /% sat each syabol type #/
syabol[strtl.sys_flags = typei /% set $lags for syabol #/

while (+¢strt (= sy ptei (
syshol [strtl.sys_type = stypes
syshol{strtl.sys_flags is typey
gen(_CPY,0,0,syabol {strtl.sya_nodel; /¢ copy initial for mach ¢/
}
return SUCCESS}
}

AFPENDIX F

R RN A R R R R R R R R R R R R R LR R RN RS 0004238005804/

1t &/
/% seq_of stats 7]
/% #

13 SRR R R R AR R SRR R R M H S R S R R R EE 1000 400/

int seq_of _stats(node)

int node}

{
REG next;

if (stat(next = soninode)) == ERROR) /% {stat) &/
return ERROR}

while (!chk_flag(next,RTNOST)) /% {<stat?) #/

if (lchk_flag(next = right (next),OPEN))
if (stat{naxt) == ERROR)
return ERROR}
return SUCCESS)

}

[HEEEE RN RS R A RS 4 AR E MM M R AR MM H RS R R A 0 R0 004/
1% #
/8 progiras)_cosp(onent) 8/
/e 8/

/HEHE R IR A R AR R AL H R R R R R R R SRR R R T R LR 1 AR LA 00 R 0 60/

int prog_coap(node)
int node}

(

int next

i (!(next = soninode}))
it (error (node,noson))
return ERROR}
else
return SUCCESS;
switch (node_type(next))
{
case P_BODY_ :
return proc_body(next)}
case F_BODY_:
return func_body(next)}

164

—

AFFENDI O F

[HERR SRR E RS HHRRER R AR R AR PR R R H R H AR T HRE A0S 000E/

1t %/
/% decl 8/
]e #/

SRR3R HR A HHE SRR AL R E HER R S H M RO R R R L R R HE R R R HEE R 00 0E/

int decl (node)

int nodes

{

return obj_decl (soninode))}

}

T T I T T T e e e e T e T L Iy
1% 7}
/% proc_spec ¢/
/e ¥/

/93844 444 ML EE R HE AR R E R E A R H SRS A H R L R R 0084000/

int proc_spec(node)
int node}
{
REE sysi /% syabol table index #/

i$ ((syn = new_ident(son(node))) == ERROR) /% new (identifier) &/
return ERRORS

sysbol [sys).syn_type != TYPE_PROC}

return sysj

/% sat sysbol type #/

}
[HH AR LR R S R R I O R R R R R 1Y/
/% &/
1] cosp{ilation) _unit ¥/
/e 4
JAERE AR R EE R R E R LR E RS R R AR/
cosp_unit (node)

int node}
{

int nextj

i$ (tinext = soninade)))
if lerror(node,noson))
return ERROR}
else
return SUCCESS)
switch (node_type(next))
¢
case P_BODY ¢
return proc_body{next)s
case F_BODY @
return func_body(next)§

165

P L T U R S

AFPENDIX F

/HRR AR R R R H H R R SRR R AR H R R R R R ARV RS R E R 00 00044/

It &/
1 proc_body §
i} &/

/1804 R HHEE R RERRH AR R R R R R4 R R H 00800 E0 112520004/

int proc_body(node)

int node}
{
REE next} /% thru sibling list &/
int label, /¢ label resolution &/
cnt, /% nusber of variables declared &/
sya, /¢ syabol entry § of proc nase ¥/
it

if (node_type(next = soninode)} == PROG_HDR_)
next = rightinext);

it ({sys s proc_spec(next)) =s ERROR) /% {prac_spec) */
return ERROR;

sysbol (sys).sys_addr = gen{_LAB,0,0,0)5 /& proc entry address #/

++lavels /¢ busp lexical level
offset » g /% zero lavel offset &/
while (node_typeinext = right(nsxt)) 2= DECL) /¢ {{gecl)) &

if (chk_flaginext,OPEN))
i {decl(next) == ERROR)
return ERROR}
cnt = offyet)
offset = 03
label = gen(_INP,0,0,0)¢ /% jusp around procedures ¢/
while (node_type(next) == P CONP_) (/& ((progras_cosponent)} #/
i (‘chk_flaginext,OPEN))
if (prog_cosp(next) == ERROR)
return ERROR}
next = rightinmnt)}
}
fixiladel)s /% §ix jusp around procedures &/
body_type = TYPE_PROCS
ret_lat » 0)
it (seq_of_stetsinext) =s ERROR) /% (seq_of _stats) 4
return ERROR;
i (1chk_flaginext,RTHOST) &t 'chk_flaginext = right (next),0PEN)) (
it {(i = old_ident(next)) == ERROR) /¢ [identifier)) ¥
return ERRORS
it (i 's sya)
¢ (error(next,"procedure 1d’s do not satch®))
return ERROR) /% sust o= first identitier &/

166

AFFENDIX F
it (ret_lst)
do
{
1 * codelret_Istl,c_opl;
finlret_lst)}
} whilelret_lst = i)}
gen(_DCS,cnt,0,node) /% resove variable stack space #/
-=level} /% restore lexical level #/
while (sysbollsys_ptr).sys_level) level) /% peel syshol table &/
syabol(sys_ptr--).sys_flags = 0§ /% clear flags field, Ll
/% laave procedure nase. &/
qen(_RET,0,0,ncde)} /% return fros procedure &
return SUCCESS)
}
167

APPENDIX F

finclude ‘*adal.h*

[3RE33 2R LR HER AR ERERRHRR R LA FHHE LR REENERERER IR LSRR EEEE/

/b 7
I goal 8/
) {cospilation) is ADAO language grasedr goal syabel. &/
It 4/

[HEEERRREEE AR R RHE R R HH R HE I F AR R R R R R S E RS/

int goal(node}

int node}

{

noson = “incosplete progras fragaent®s
bool _exp = "boolean type expected"$
int_exp = "integer type expected";

typesINUL _] a ‘Y

typesfPLUS] = "+
types[NINUS_] = ="

types(DIv_] . o

types(NEQ_]) 3 */a%

types{LES_] s 7

typesiLEQ_] . *(a%}

types(EQU_] = *s%

types(GRT_] s Y

types(6EQ_) s *)nty

types{A STAT 1 = *assignaent stat®}
types(AND_CONP_]e *and_comp®}
types{CONST_] = "constant";
types[DEC_NUN_] » *decinal _nusber";
typesfDECL_) = *decl®s
types(ELSIF P_] = *elsif_part*}

types(IF_STNT_] =
types({1_CLAUSE_1=
types[LP _STNT_] =
typesINANE) =
types(N_EXP_)
types(OR_CONP_)
types(P_CALL_]
types(P_COMP_)
types{RELATION_]=
typesfUOP] =
typesCREN_] =
types(NOD_] s
types[AND THEN_CONP] =
types(OR_ELSE_CONP_] =
types(XOR_CONP_) =
types{INTEGER_] =
types(BOOLEAN_] =
types(CHAR LIT] =
types(IDENT] =
types{TRUE_) =

*if_stat®;
*iteration_clause®;
loop_stat;

*nase”$

*nested_exp"}

*or _coap"|

*proc_call®}

*progras_cosponent®}

*relation"}

‘unary_operator®}

lr"D‘

lml’
“and_then_comp"}
or_else_cosp’y
*xor_comp'}

*integer®}

*bool ean'}

char_lit*s

‘identifier"}

*true®s

1468

AFPENDIX F

types(FALSE_) = “false";
types{F_CALL_} = “tunc_call®;
types(F_BODY_] = *func_body"$
types(P_B0DY_) = *proc_body";
types{RET_STNT_] = ‘return_stat";

types(BOOLEAN_VALUE) = ‘boolean_value®;
types(EXP_PRIMARY] = “exp_prisary®s
types[ABS_PRIMARY_] = “abs_primary*;
types(NOT_PRINARY] = “not_prisary”j
types(EXPON_PART] = “sxpon_part®;
types{CHAR_) = ‘char’}

types(PROC_RET_) = *srocedure_return®}

types[FUNC_RET) = *$unction_return®}

types(COMMENT] = *cossent’}

types(NULL _STNT_) = *null_stat")

types(PROG HDR_] = *progras_header®}

types[LAST_PROD_] = 03

#ill_types()}

return coap_unit{son{node}}; /% (coapilation_unit)

}

169

&/

AT TRy T LR e

AFPENDIX F

#include *adal.h”

(R RS E4 RHERE R ER AR R R R R SRR EE R RN ERRRRER IR RN R R MR REH/

e 8/
/¢ tunc_body 7
i #

ORI R R E SRR R RN R R SR RS R R R R F RN R R RN R RN H RS R0 0ES/

int func_body(node}

int node}
{
REE nextj /% thru sibling list /
int label, /% label resolution L\
cnt, /¢ nuaber of variables declared #/
sya, /¢ sysbol entry ¥ of func nase #/
i}

i (node_tvpe(next = son(node)) == PROB_HOR_}
next = right (next);
if ({sys = func_specinext)) == ERROR) /# (func_spec) #/
return ERROR}
syabol [sya).sys_addr = gen{_LRB,0,0,0); /% tunc entry address #/

++level} /% busp lexical level #/
offset = 0} /% zero level offset &/
shile (nade_typelnext = right{next)) == DECL) /¥ ((decld} &

it (ichk_flagtnent,OPEN))
i¢ (decl(next) == ERROR)
return ERROR}
cnt = offsets

offset = 0f

label = gen(_IuP,0,0,01¢ {% jusp around functions &/

while {node_typeinext) == P_COMP) /¢ {{progras_cosponent>} &/
(

it ('chk_flag(next,OPEN})
if (prog_cosp{next) s= ERROR)
return ERROR}
next = right(next);

)

tin(label)s /% §ix jusp around functions ¢/
body_type = TYPE_FUNC; /% indicate working on function#/
ret_type = syabol(sysl.sys_type} /% indicate return type &/
ret_lst = 0§

it iseq of_stetsinext) == ERROR) /% (seq_of_stats) #

return ERROR}
if ('chk_flaginext ,RTMGST) &b 'chk_flag(next = right(next},OPEN))
{
if ((i = old_ident{next = son(next))) ss ERROR)
return ERROR)

if (i !'= sya)
if {errorinent,”function designators do not match*)}
return ERROR; /% sust = first identifier Y
}

AFFPENDIX F

it (ret_lst) /% check if return list exists #/
do
{
i = codelret_lstl.c_oplj
fix(ret_lst)}
} while (ret_lst = i)}
else
if (error(node,functions sust contain a return statesent®))
return ERROR}

qen{_ST0,0,-4,node) ; /% save return value 8
qen(_DCS,cnt,0,nodel s /% resove variable stack space #/
--level} /% restore lexical level &/
while (syabollsya_ptrl.sya_level) level) /# reset syabol table &/
--sys_ptrj /¢ leaving function nase &/
gen(_RET,0,0,node)} /% return froa function Lz
return SUCCESS)
}
JERRS RS SRR HH R R R S R R F R R VR 14
1) 7
11} tunction_specification 7]
/e &/

/HAE R R EEREHHEHE R HHH HER R SRR EH AR AR HE RS IR R E R 0 AR AR EE/

int func_specinode)
int node;

{
RE6 next,syst

if ({sya = desig{next = son(node)}) == ERROR)
return ERROR}

sysboilsyal.sya_flags = TYPE_FUNC}
it ((syabol(sys).sya_type = sub_ind(rightinext})) == ERROR)
return ERROR}
return sys;
}

APPENDIX F

JERRER AR LA R AR R R R R R AR R0/

/% &/
/¥ function call 8/
1t &/

AR AR R H AR EEHEEEERE R R A ER R E R R AR AR R S HE S RE R HERHE N VAR EE/

int func_call(node)
int nodes

{
int next,sya$

it ((syn = old_ident{next = son(son{node)))) == ERROR}
return ERROR}
it (!{syabol(sya).sya_flags && TYPE_FUNC))
{ error(next,“function nase expected");
return ERROR;
}
gen{ _LIT,0,0,n0de}} /% create space for return &/
/% value %/
gen(_CAL,level-syabol (syal.sys level,sysbol(sysl,sys_addr,next)}
return sysbol(sys).sys_type;
3

JHERRERR IR SR HR DRSS R LR SR E SRR RS ERER R R ARV E4E/

1% ¥/
it designator &/
14 7

JHHR R R R AR R R R R R AR AR AR AL RO R R R AR R R RS R H R RO 008/

int desig{node!
int nodes

{

return (new_ident {son(node}})}
}

172

¢ A ———

AFPFENDIX F

444 AR EHR R LR SRR RRR R R RN HH R AR SR RS R ERRNEHRE RS RIRER Y/

4 ‘ /% &/
:] return_statesent 8/
/4 8/

JH R RN E AR H AR RN H A R R R R A R R AR HE R R R R RS E R R R0/

int ret_stat (node)
fnt node}

{
REB next}

it (!{next = son(node)))
{
error (node,noson) §
return ERRORS
}

switch (node_type(next))
{
case PROC_RET_ :
return proc_retinext};
case FUNC RET_ :
return func_ret(next);

i }
)
/AR E R MRS HE R R LR MR R H RO R R M S R R R S R R R R R B R AR/
v #
/% procedure_return - accept a procedure return. #/
it 7
F JH AR R AR E S H R R R L AR R R R R R R R R R 00/

int proc_ret (node)
int nodej

: (
}j . it (body_type s= TYPE_FUNC}
i+ (error{node,’functions sust return a value*))
return ERROR;
o else
gen(_LIT,0,0,n0de);

ret_lst = gen(_INP,ret_lst,0,ncde)}
return SUCCESS;

'
X !
i) 3
£ a

173

e

APPENDIX F

JERE SRS R AR R R L E R R R R R R R IR R R A R AL R R R R R RS/

1

1] tunction_return - accept a function return,

1) it aust return the correct type. return type
1% is stored globally in ret_type,

It

&/
#/
s/
&/
&/

/SE45 R4 E 4RSS EEER L EESEEEEE SR ER LM H NI EH 000400/

int func_ret(node)
int nodej

{
int type,nexts

i (body_type == TYPE_PROC)
i¢ (error(node, procedures cannot return a value®))
return ERROR;
else
(
ret_lst = gen(_JWP,ret_lst,0,node};
return SUCCESS;
}

if {{type s exp{next = son(ncde)}) == ERROR)
return ERROR;
if (type != rat_typel
it (error{next,return expression of wrong type*))
return ERROR}
ret_lst = gen(_JNP,ret_lst,0,node);
return SUCCESS}
}

174

e s ep e e s

e

T e g SRR

S

APPENDIX F

finclude ‘adal.h*®

[EERRRR AR RRE RN E NG LR RRE R RO RN ERR RN R R HE R R R R RN R AR RN RS/

/% #/
/e exponent prisary - accept a primary with an optional s/
/t exponent, if the exponent exists it sust be 7
4] an integer and positive, #
/% &/

JE R H A HREEEHEE R SRR A RS 4 M AR R R EERE SRR R HHR AL HH LR R4S/

int exp_prim{node)
int nodej

(
int typel,type2,next;

typel = prisary(next = soninode)}:
it (node_typeinext = right(next)) '= EXPON_PART_)
return typel;
it (typet !s TYPE_INT)
itl errorinext,int_exp))
return ERROR}
it (expon_partinext) != TYPE_INT)
it (errorinext,int_exp))
return ERROR;

gen(_EXP,0,0,node} }

return typel}

}

[HHE RS RS I R AR IR HE R A L R R L SR H R R E RS 0/
/¢ %
/% exponent part - accept the exponent part of a factor ¥/
/% generate code to do exponentiation. Exponent 7
/e sust be of type integer, ¢/
/% &/

JH RS HE R AR AR R L R R R R SR H R R R R HE R R R REH R R R £ R AR R R4 E/

int expon_part(node)
int nodej

{
return prisary(son(node))}
}

AFFENDIX F

{34 R R HELHERRHHRRRR AR AR LA LEHRCEREH REERAANE S ER AR AR HEEAEN/

/¥ +/
/¢ abs primary - accept an absolute value prisary. +/
/% generate code to find the absolute value ¥/
/t of its arquesent. 8/
/% &

1R R R AR E RS IR R HHR R R E R R R E HERH SRR RS R R HH R REEE/

int abs_pris(node)
int node;

{
int next,type;

it ({type = primary(next = son(node)}) '= TYPE_INT)
it terror(next,int_exp))
return ERROR}

gen(_ABS,0,0,node)}
return types
}
[ML H S HA R M HE H A R R H R A LR R B R 51/
14 7
It not prisary - accept a negated boolean grisary. L7
I3 its arquesent sust be a boolean expression. 7
2] #

JH RS R R R R H R A R M R HE R RS A HE R L R R RS HEH AR R R L R AR B0 EE/

int not_pris{node)
int nodej

{
int type,next}

it ((type = primaryinext = son(node))) 's TYPE_BOOL)
if (errorinext,bool_exp))
return ERROR)
gen{_NOT,0,0,node) §
return typei
}

AFFENDIX F

JHRRRSERRHERREE AR LR AR R R RN R RN R R R RN R R R R R R R RFE LR RERE R RS RRRS R4/

1] 00000 00 00 00 00 00000 00000

1] 00 00 00 000 00 00 00 00

/e 00000 0000 00000 00 00 0000

1] 00 00 00 000 00 00 00

1% 00000 00 00 00 00000 00000

/%

/% SYNtax-Directed Editor (c) Copyright Decesber 1982

1% CAPT. Scott Edward Ferquson, USAF, AFIT 6CS-820

1% Modified October 1983

/4 CAPT. Michael L. McCracken, USAF, AFIT 6CS-83D

)

1] INTERP.C

/% SYNDE systea “dynamic display” interpreter. The interpreter
i itself is lanquage independent, using a stack pseudo-sachine,
/4 but aust be linked with language dependent cospiler routines,

&/
&/
&/
&/
&/
#/
8/
&/
&/
4/
&/
&/
&/
&/
%

AR R R LR R AR R R RE RN R RS H R R R AR TR RS R R R R LR HHE R RS R R AR R ERAHRER/

finclude “synde.h*

Sinclude “types.h*

finciude “code.h®

finclude (curses.h)

extern

struct file_info src_infos

extern
struct tera_info tdf_dataj

extern
struct code_word #codej

extern

int inst_ptr,
stk _ptr,
sstacks

char scodes(_NOOP],
#types[LAST_PROD_),

/% systes global information structures &/

/% production type definitions

/¢ pseud

#noson, #int_exp, #hool exp,

str(WIDE

int (4]]

o-code structures

/% source tile inforastion
/* in AST.C

/% terainal display inforaation

1) in DISPLAY.C

/% pseudo-code aesory
/% in EXECUTE.C

/% instruction pointer
/% stack pointer

/% stack space

/% instruction nases

/% display line to build

/¢ cossand input character

177

74

&/

#/
L7

7
#/
&/
7
7]
L 7]

¥/

Y

¥/

&/

AFFPENDIX F

AR R A R R R R R R R R R R R R RN R RS L R RN R AR R R R R 38/

/¢ fain
I Entry point and driver for interpreter.

&/
i

(R R R R R R R R R R A R L R L R A R R L R R R F R LR H R R R R Y/

sainfarge,argv)
int arge; /% input argusent count
char dargvil)j /¢ input argusent ptrs

{

puts{"INTERPRETER 11/11/83 *)§

if targc ¢ 2) /% prepare source file nase
puts(®Unspecified source file, *);
exit()}
}

/% initialize
it (a_init(argv(il) == ERROR ! s_init(src_info.f_lang) == ERROR)
exit()j

if (compiled)) { /% check generated code for errors
puts(*Errors in source progras. Continue with interpreter?®);
it (toupper(getchar()) == 'Y*)
interpret()} /% interpret pseudo-code any way
}
tlse
interpret(}} /% no errors, interpret pseudo-code

it (a_wrap() == ERROR)
exit()}
s_wrap()}

it (src_info.f_edit) (
exscl (®synde®, *synde®,arqvi1]},2)}
puts("Cannot access SYNDE, *);
}

178

#/
t/

&

&/

¥/

&/

&/

Lt

APPENDIX F

JHRRERERE AR SR AR AR S RE AR SRR TR RR AR R A H H R E R RS R H M0/

It interpret ¢/
: it Interpret the gensrated code with dynamic display of &/
i 1t progras AST tree, Allow user interiction to execute, &/
/8 single-step and terainate execution. t/

/R R AR AR R A R R R R N AN R R R R R R R S H H S R R B R R RSO R RERY/

interpret()

{
int focus? 1% dislay image focus ¥/
BooL conti /% continue execution #/

codes(_JNP1 s "INP"} /% instruction nases #/

cades{ _CPY) = *CPY*s

codes{ ST01 = *§T0")

codes{_CAL) = *CALY)

codes{_JPC1 s "JPC*;

codes{ _EQU] = "EQU*§

codes{_NEG) = "NEQ*;

codes(_LES] = *LES"}

codes(_LEQ] = "LEQ*;

codes{ GRT] 3 *BRT";

codes{ 6EQ] = *GEQ"}

codes{_NE6) s "NEB"}

codes(_ADD] = *ADD%;

codes{ _SU8) = *5UB"}

codes(_MUL) = "MUL";

codes{ _DIV] s *DIVY}

codes{ _LIT] s 'LITY

codes{_L0D) = *L0D%}

codesl _RET] s *RET"}

codes{_AND] = *AND*}

codes(_OR} s *0R"}

codes(_NOT] = 'NOT"y

codes{_DCS) = *DC8*; -

codes(_MOD} = "N0D*;

codes{_REN) s "REN*}

codesC_AND_THEN= *AND_THEN®}
codes(_OR_ELSE] = *OR_ELSE*}
codest_OR] = “XOR";

codesl_ABS] = "ABE")
codes(_EXP) = "EXP"}
codes{_NOOP) = “NOOP*;

179

Sl s

‘
APFPENDIX F
systea (“stty cbreak”);
systea (°stty -echo”);
3 it (d_init() == ERROR !! i_init{) == ERROR !! e_init() == ERROR)
} exit)}
tocus = NIL}
ch = 0}
cont = TRUE;
while {cont)
if {focus = codelinst_ptrl.c_node)
. window(0, focus, TRUE) }

_' do_resreshi)} : 3
show_stack i)} :
show_inst ()}
if (ch !'= °C?)

{
message(*Single-step, Continue, Restart or Exit?*);
ch = toupper (keyinl))}
message("®)§
}
switch (ch) (
case 'C’: anssage(**)}
3 case ' ':
g case 'S":
| it (execute() == ERROR)
! {
arssagei*End of valid progras.’);
ch 2 03
}
else
break}
3 tase 'R’:
. restart ()} break;
case ’E’!
S cont = FALSE;
;)
; i }
d_wrap()s
Y i_*‘ﬂ() }
E , e_wrapll}
: ! systea(“stty echo*)s
S systes{®stty -cbreak®)}
i
L
44 ‘
|
180

APFENDIX F

L L T L e e L e T T R T IR R e e AT T T e e Y
L] show_stack 7
] Display a portion of the top of stack on the screen, ¢/
(R RS R R S R S R R R R SRR O R R R R R R R R R R4/

show_stack(}
(
REE i

strcpy(str, "Stack: *)3
tor (i = stk ptr ~ 1) i)= 0 &k strienistr) ¢ tdf_data.charsi --i) {

catnusistr,stacklil)}

strcatistr," °}}

}
dsp_line(str,tdf_data.lines - 3¢
}
L e L A Y I T T P Y P R T YT Y A AT AT YT Y Y
/¢ shom_inst 8/
It Display the next instruction to be executed on the #/
/t screen. L

JHA IR N H R R R R R H R R R R R R H R HR R R R R R SR R S R RS 4R/

show_inst ()
{
REG i

strcpy (str, *Next instruction @°)3

catnuaistr,inst_atr);

streat(str,*: ")}

i# ({1 = codelinst ptrl.c_opcade} > 0) {
streatistr,codes(il)} /% instruction snemonic &/
strcatistr,” °)}
catnuaistr,codelinst_ptrl.c_opl}); /% operand { &/
streatistr,”,*\s
catnuaistr,codelinst _ptrl.c_op2y /% operand 2 ¥
}

else
strcat (str, "INVALID")}

dsp_line(str,tdf data.lines - 2)§

)

181

e e < RN U

AFPPENDIX F

JHEER RS R A H R R R SRR SRR R R R RN R R R LR R R R R R R SR04/

1+ citnus #/
/t Concatenate the ASC!I representation of a signed nuaper #/
/* to the end of the given string. 4/

/0 RE H N T IR HE E R H A S SR SR E H S (E R R HH R R R H R R MRS/

catnus(string,val)
char #string}
int val}

{
char sl7]}
REG i

if val <1 ¢
strcat(string, ")
val = -val}
}

s(i = 8] = 0}

do (
s(~-i] = val 1 10 ¢+ 0%}
} mhile (val = val 7 10}
strcat(string,kslil)}
}

/¢ temporary string
/% string index

/¢ negative value

/¢ generate characters in
/% reverse orger

/% concatenite nuaber string

&/
t/

&/

&/
#/

#/

[HR AR R R R R AR AR R R R R R SRR R EE H AR R R RN R R R R R H AR R R E AR R RE Y/

/%
/¢
it
/&
/¢
/¢
/®
/%
/e
/%
/4
/¢
it
/¢
I)
/e
i}
/¢
/%
/%
/4
/%
/4
/¢

00000
00
00000
00
00000

AR EENOTA

00 00 00 00 00000 00000
G0 00 000 00 00 Q0 00
0000 00000 00 00 0000
00 00 000 00 00 00
00 00 00 00000 00000

SYNtax-Directed Editor (c) Copyright Decesmber 1982
CAPT. Scott Edward Ferquson, USAF, AFIT 6C5-82D

Kodified October 1983

CAPT, Michael L. McCracken, USAF, AFIT 6C5-83D

SYNDE systes

top of stack

battoa of stack

EXECUTE.C
pseudo-sachine eaulator.

a0 <'
[work space)
[local variables)
[static link) <-
(dynamic link 1
[return address)

Stack organization:

stack pointer

base pointer

&/
&/
&/
&/
8/
&
#/
&/
&/
&/
¢/
&/
&/
#/
#/
7
&/
&/
L7}
&/
&/
&/
&/
&/

464284000 RR e v HERRHERF R H MR AR R R R R AR SRR R E R R F R REF RS/

finclu

de "synde.h"

$include "code.h’

extern

struct code_word tcodes

#defin

int

e STACK 100

inst_ptr,
base_ptr,
stk_ptr,
tstacky

/% systea global information structures &/

/¢ pseudo-sachine structures

/¢ instruction space

/¢ stack size

/% progras instruction pointer

/% dase

pointer register

/% stack pointer register
/& sachine stack

183

¢/

L

L 7

4/
&
&/
L 7]

B SAEVA SE iy * N oe—— ek —-Z_ﬁ

APPENDIX F

A L L L T e T Y I T T Y T T T Y 7 TR T R T TR)
/¢ L1
it e_init %/
/s Initialize execution eaulator, L
1] #
e I e T e 1Y)
int e_initt{)
(
it ('(stack = salloc(STACK#2))} /¢ allocate stack space +/

return ERROR;
restart()} /% set processor at beginning #/
}
Ty S T T T T T T T L)]
1] #/
L] restart #/
/e Set the evecution eaulator to resume at progras start, #/
/e L 71
(R R A R R R R LR R R R R R R R R/
restart()
{
stk_ptr s inst_ptr = 0§ /% clear stack, inst pointer &/
push(0); /% return loc for function 8/
pushi-1); /% *program end" return addr &/
push(0)} /¢ initial dynanic link t/
base_ptr = stk _ptr} /% base pointer to static link ¢/
push(0); /¢ initial static link ¥/
return SUCCESS)
}
FHRR R AR R R H R BRI M S I S R E R R R R L R R R R R R R R R LR R E RS/
/¥ #
it execute +/
/4 Execute the next sachine instruction, Return ERROR &/
/e upon reaching end of progras or invalid instruction. &/
/4 +/
JHRSHE R AR R R R R R R AR SR RO HH B R R A TR R R R R R R R R AR 0/

4 int execute()
’ {
register
struct code_word #inst regi /# pointer to current inst ¥/

int iyjakyl}
inst_reg = kcodelinst _ptre+)s /¢ fetch next instruction #
suitch (inst_reg-)c_opcodel { /% decode instruction Ll

case _JNP:
inst_ptr = inst_reg-)c_opli break;

184

ADA1: AN ADA SUBéEI COMPILER FOR THE AFIT SYNTAX

AD-A138 027 1/
DIRECTED PROGRAMMING ENV..(U} AIR FORCE INST OF TECH 4
NL

WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. M L MCCRACKEN

UNCUASSIFIED 05 DEC 83 AFIT/GCS/MA/B3D-4 F/G 9/2

iie

el - e

o snem—

-y
e i
1l e 20

I
I

Il

lle2

I

N
(3

I

I

~

I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

il RO

e £k

43 At

P £

Ly et

S e

Tt

e SO 6 aiih s S e
- « N

-

APPENDIX F

case CPY:

push{push(pop()))} break}

case _ST0:
stack{base(inst_reg->c_opl) + { ¢ inst_reg-)c_op2] s popl)j
break}

case _CAL:
push{inst_ptr}} /¢ save return address &/
push(base_ptr)} 1% dynasic link &/

push (baselinst_reg-)c_opl})y /¢ static link 8/
base_ptr = stk_ptr - 1}
inst_ptr = inst_reg-)>c_op2; /# vector to routine &/

breaks

case _JPC:

it Upoptd)

break}

push(pop() == pop(})§ break}

push{pop() = pop{})} breaki

case _LES!

i=popl)y
i=poplls
push(j ¢ i)}

breaks

case LER:

i = popl)}
j = popt)y
push{j ¢= i)}

breaks

case _BRT:

i = popi)}
j = popi)s
pushij > i)y

break

case _BEQ:

§ = popl)s
§ = popt)i
push(j)= i)}

breakj

inst_ptr = inst_reg=)c_opl}

185

e i A T

<t

APPENDIX F

case _NEG:
pushi-pop{)}§ breaks

case _ADD:
push(pop() + pop{))} breaky

case _SUB:
i = poplly
i = popihs
push(j-i)}
breakj

case MUL:
push{pop() # pop()}} breaki

case _DIV:

i = popl)}
push(pop() / i}} break}

case LIT:
pushiinst_reg->c_opi)} break;

case _LOD:
push{stacklbase(inst_reg->c_opl) + 1 + inst_reg->c_op21)}
: breaki
! case _RET:
‘ popl)} /¢ discard static link #/
3 base_ptr = pop()} /% restore base_ptr &/
‘ it ({inst_ptr = pop()) == -1} /% restore inst_ptr 8/
] return ERRORS /% exit if “end* &/
| breaks
case _AND:

push(pop() &k pop())§ breakj

case _OR: , -
push(pop() {! pop())} breaks

case _NOT:
push('pop{)}} breaki

case _DCS:
sth_pcr -= inst_reg=>c_oplj break|

case _REN:
i = popi)y
j = popl)}
pushij = (1j/1) ¢ 1))}
breaks

APPENDIX F

case _NOD:
i = popll}
i®popily
i (k= /i) e Q)
push(j - (k ¢ {))}
else
pushii ¢ j = tk & 1))y
breaky

case _AND_THEN:
if ('popl))
inst_ptr = inst_reg=)c_opl;
break}

case OR_ELSE:
i# tpop())
inst_ptr = inst_reg-)c_oply
break;

case _JOR:
i = poplly
1 ® popl)y
pusht'iti & §) "1 U1 & Y)Yy
breaks

} tase ABS:
i 413 = popt)) ¢ 0)
push(=i)}
else
pushiily
i breaks

Case _EXP:
i s popl)y
if (1 ¢C0
{
puts("ERROR - negative exponent®))
return ERRORS
: }
. § = poptly
e l s "
for(k = 13 & < if kee)
lslsy
pushil)}
broaks

Casa _NOOP:
break}

' = default?
: ~ . return ERROR)
)

N 187

< « s 0ed

T E 3
_ ¥ - S 2t 2 .
AP GO PP~

arv

APPENDIX F

return SUCCESS)

)

JAHRB I A H M
/s 8
i» push 8/
1] Push a value onto the stack. The pushed value is also &/
I returned, Stack overflow exits with an error sessage. #/
I #

[HH I R S R I L N/

ist pushival)
int val}

{

if (sth_ptr)= STALK) (
puts(®Stack averflow.*)}

axit)}

}
roturn stackistk_ptre+) s valy
}
[HHT I HH R HN/
I 8
I pop L7
/e Return the value popped fros the top of stack. 8/
/e &
(S A HH HHH E L M H R A N/
int popl)
{

if (stk_ptr)
return stack(--stk_ptrl}

puts{®Stack underélow.")}

mit()s
)

188

I Nt

APPENDIX F

(4RI HAH M R R R DA H IR R R R B T E L S R H U R HHE R L EHEE R ER 54 204/

/¢ 7]
] base ¥/
I Return the base pointer for the given static level #
I difforence, 8/
] 8

JHHBH R H I HH e

int base(level}

int level}
(.
RES new_basel
new_base = base_ptr} 1% start with current base ptr &/

while (level) (
new_base = stackinew basel} /% chain to base pointer at the ¥/

~<lovel} /4 desired level 8/
}
return new_base]
}
JHRM N M HH N M S M HH R R0/
I \ . 8/
I e wap 8/
1] Terainate use of exscution esulator. &
/e L7
AR MR H A H I R R T R
e wapll
{
frenistack)y /% restore stack space 8/
}

189

D e M o W —

AFPPENDIX F

tinclude *synde.h’

S HBHIHHH I HH I H I I M R RS/

1L &
I streq - test strings for equality 8/
/¢ 8/
/R I N M A0
streqistri,str2) /estring equality test &/

char strill, str2()s
{

return (!strcapistri,str2))s
}
I M M H I L e/
] 7
it prestr - test if strl is beginning of str2 8/
/% ¥
(A M H H R H R L S e
prastr (strl,str2) /% test if stri is beginning of str2 #/

char strifl, str2lls /¢ return 1 it true, O atherwise ®/
{

int iy

=04

whilelstrifil) == str2(il)
if (striliee) ==)

returnil)}
it (stri(i) == Q)
return(t)s

else return(0)s
}
JHHHH I H N H N R 1R/
1) 8/
/4 isnuseric ~ test if a character is a nusber &
/e Y]

[HHIRHHAHH N HH 8/

isrunericinua, am) /% nuseric set test &/

char nusj
int saxj
{
return isdigitinua) & ((mua = *0’) ¢ sax)}
}

190

il SR o L e o

A APPENDIX F

L L T L T e L T L L L T T L Ty

1] &
] toupper - convert lowercase input to uppercase 8/
/e L)

1000000000000 A NI MBI N MM LM 0 R HE MR R 000 1 B R R0 0000/

toupper (ch) /¢ convert lowsr case character to upper case ¢/
Y int Ny /% retern al] others unsoditied 8/
3 : return (islouer(ch) 7 (chl="a’¢*A" ¢ A
10000004 M0 MM HH I R HH M H NN/
;: tolower - convert lowercase inputs to uppercase ::
ll:nnmuomuuumnnuuimumumuunmou«uuuu::
tolower (ch) /¢ convert upper case character to lower case ¢/
int chy /¢ raturn all others unsodified +/
:mm {isupperich) ? (ch)="A"+'a’ ch)}
1R H H R LA S L L RN S R R Y/
Z: joerr - display 1/0 error sessage :z
! ’)

L L L T e L Y

toere (fp) /¢ bogus foerr fenction &/
int s

¢
puts{"1/0 srror occured®}}

)

L

191

o e e

APPENDIX F

JHESR AR R HE R AR RS A HE MR R R R HEA R RS T AR R R H RS AR ERERERERAEEE/

/e 4/
It clear_finfo - clear #ile_info block #
/e ¢

S L S H M L A 580
clear_finfo(fptr) 7% clear file_info block &/
struct file_info #fptr}

{ int iy

fptr=>¢_buf = 0}
strepy (fptr=)¢ _nane,**)}
strepy (fptr=)f_lang,**H§
strepy(fptr=)¢ _creat,*")s
strepy(fptr=)¢_last,"*)}
strepy (fptr-X¢_conf,*’)}
fotr=>¢_edit = 03
fptr=>f_update = 04
fptr=>¢_avail = 0}
tptr=)¢_root * 04
fptr=>¢ clip = 0}
tor (i=0) (<103 iee)
tptr=>f _sarklil = 0
}

JHRM M A R R F R/
1% ¥
/e clear_ast - clear ast_node &
/e &/
JFHHH N T I T S AR e
clear_ast(ast_ptr) J% clear ast_node 7}
struct ast_node fast_ptr}

(

ast_ptr-)a_flags = 03

ast_ptr-a_value = 0§

sst_ptr-)a_prod = 0}

ast_ptr-)a_right = 03

ast_ptr-)a_son = 0§

}

192

—r— T 'fhﬁf::::::zslll

APPENDIX F

[R R R T MR T HE R R R R HH O R R S R L O R 0 00 4 5000040/

/2 L
1] tlear_tinfo - clear tersinal inforsation structure 8
" L
(PR H I HH S I A M/
clmar_tinfo(tdf _ptr) /% clear ters_info &
struct ters_info #tdf ptrj

{ int i}

tdf_ptr=lines = 04
tdf_ptr-)chars = 0}
tof_ptr->usize = 04
tdé_ptr->xxx(1) = 0}
tdé_ptr-)xxx(2] = 03
tdé_ptr->xxx(3) = 0}
tdé_pte->uxxl4) = 0§
tdf _ptr->xaxi3) = 0}
for (is0p iC291 i¢e)
strepy (tdé_ptr-readslil,**))
strepy(tdf_ptr-dinit,"*)y
strcpy(tdé_ptr-)tab,**)y
strepy (tdé_ptr-delide,**)}
strepyltdf_ptr=)div,*")}
strepy(tdé_ptr-)clr,"®)§
strepy(tdf _ptr-dpas,*"
strepy (tdf_ptr-denl,*"}}
strepy(tdf_ptr-)de, ")}
strepy(tdé_ptr=)rev,**)}
strepy(tdf_ptr-dnore,*®)§
strepy(tdf_ptr=dion,"*)s
strepy (tdé_ptr-)iefé,*")
strepyltdé_ptr-)il,**)3
strepy(tdé_ptr-)dl,"*)4
strepy(tdé ptr->tini,**)}

193

~

-44*: .

-

o s e s B 8 I vt

AFFENDLX F

R4 R4S R HE BRI EER SR L EREERARRRER R R HERNEHS AR E0EHE0E HAHERNNESY/

/% 8/
18 ADA1 CODE LISTER (c) Copyright Noveseber 1983]
] CAPT, Michael L. McCracken, USAF,AFIT BCS-83D 8
/% L 7]
/t CODE_LISTER 8/
1] s/
/¢ Resd code file generated by the Adal cospiler and produce a &
/e forsatted file of the code for user inspection. Y
It §/

[H S M M R P I NY
finclude "code.h" /% pseudo-code structures &/
$define ERROR -t

idefine READ O
ddefine REG int

struct code_word code} /% pseudo-code seaory #
int inst_ptr, /% instruction pointer ¥
code_file; /% listing file pointer 8/
char code_nase(20], /¢ output file name #/
scades(_NQOP1, /% instruction nanes L 3]
strid0]y /% display line to build #

194

APPENDIX F

1R I R R E S H R R R R R AR R E R R R R H R R R LA R R R R R 1R 008/
i &/

L ain s/
/e Entry point and driver for code lister, 7
/e &/

J RGN R R L H L R L L TR MR R E R R S0 0 4/

sainlarge,argv)
it arqcs /% input arquaent count L
char targvily /¢ input argusent ptrs &/

(
puts(*COBE LISTER 11/11/83")3

if targe ¢ 2)
(

. # prepare source file nase #/

puts(®Unspecified source file.”)}
xiti);

)

c_init)

it targe 2 2
strcpy(code_nase,argv(2)i
else
{
. puts(® Filenase for code listing? (default is nase.codlst)®)y
', gets{code_nase)
; : puts{**)}
3 ‘ if (‘strlen(code_nase))
{
strepylcode_naee,argviil}y
streat (code_naee,®.codlst®}y
)
)
printf("Code 1ist output file = is.®,code_nase);

it ((code_file = creaticode_nane,0644}) == ERROR)
{
puts{®Cannot create code listing file.)}
exit(}s
)
else
c_listlargvlil)y

close(code_file)}
}

APPENDIX F

JHHE R R E R R H R R R R R AR R R HH R PR R R R AR R R R R R R R R RO R R R R R 08/

1% ¥/
/% c.irit - initialize codes array with instruction strings, &/
/¥ ¥/
T e T T Y T T Ty P T Y PeT P ery Pe Y]
c_init()
{
codes{_JNP] s *INP*) /% instruction names #
codes(_CPY) = *CPY"y
codes{_S70] » *ST0"
todes{ _CAL] a "CAL"Y
codes(_JPC] = *JPC"}
codes{_EQU) = "EQU*4
codes{_NEQ] = “NEQ";
codes[_LES] = “LES"
codes(LEQ] = *LEQ"
codes{_6RT] = “GRT*
codes{_GEQ) = "GEQ";
codes(_NEG = “NEG"}
todes(_ADD] = "ADD*}
codes(_SUB1 = *SUB";
codes{ _MUL] = "NUL*}

p codes{_DIV] a "JIvVY

3 codes{_LIT) = "LITY

3 . codes(_LOD) = "L0D*;

y: : codes[RET] s "RET"}

3 codes(_AND] s "AND"}

{ codes{_QR] = “0R*;

codes(_NOT] s NOT"}
codes{_0CS] = *0CS"}
codes{_NGD] = "NOD*}

5 codes{ REN] = "REN*j
3 codesl_AND_THENI= *AND_THEN';
E codes{_OR_ELSE] = "OR_ELSE"}
E codes{_XOR] a *JOR"S
codes{_ABS] = *ABS"j
codes(_EXP) s "EXPY¢
codes{_NOOP] = °*NOOP";
}

¥ 196

APPENDIX F

R T R T R T I I LT T L PRy T P e Y e

/¥ &
/4 c_list - produce code listing and output to a file %/
/% #

[P R L R R LS S SR/

c_list(c_naaw)
char c_nasel);

{
int c_file,nus_read,instr_nus,i,cont}
char stri40)4

instr_nus = 03

strcat(c_nase,®.cod");

if {c_file = open{c_name,READ)) == ERROR)
(
puts(*1/0 error cpening code file *)}
putsic_nase)}
puts(®,.*}j

else
/% read until end of file &/
while (nus_read = read(c_file,kcode, (sizeof (struct code_word)))
&k cont)
(
it (nua_read == ERROR)
puts(°1/0 error reading code file.*)}

else
(
strepy(ste,*®)} /¢ initialize as aspty +/
catnua(str instr_nust+)§ /% instruction nusber L

streat(str,®" ¢ °)y
if ({i = code.c_opcode) > O}

{
strcat (str,codes(i]}} /% instruction string &
streat(str,® °*)}
catnusistr,code.c_opi}} /% operand | #
strcat(str,*, ")}
catnuaistr,code.c_o0p2)} /% operand 2 4
)
else .
i¢ (1 == 0) /% end of file before #
/% actual file and 8/
(
strepy(str,**}y
cont = 0}
}
else
strcat (str, "INVALID®}} /¢ invalid instruction &/
strcatistr,’*)}
i = strientstr)y
197

sttt .

APPENDIX F

it (witelcode file,str,i) != i)
puts(*1/0 error writing code listing file.")

)
}
)

close(c_file)}
}
P T e T e L L e I L T e e e e e Ly
I &
/8 catnus &/
1L Concatenate the ASCII representation of a signed 4/
/e nusber to the end of the given string. ¢/
" o
JH M H U N/
catnuaistring,val)

char #string}

int val§
{

char s(7}4 /8 tesporary string 4

REB i /¢ string index 8/
if {val € 0) ¢

strcatistring,*-*); /% negative value 8/

val = “vnal§

)
slinbdl=s®y /% generate characters in &/
do (1% reverse order &/

s{—-i) s val 1 10 + 0’}
} while (val = val / 10}

strcat (string,dslil)s /% concatenate nusber strings/
}

198

T T R W T i - 4

PV ORI v |

JeziTeuy otjuBmeS 1-H eanITg

~

J0X10 J9zATeuy W
ﬁ uoyssaxdxy sadAy paxysep

adAq

199

"N

APPENDIX G

W TPt —

-

APPENDIX G

JozATeuy uoyssexdxy 2-5H eanfyy

JosATeuy
Joaae JezftEUY
TTed sweu eanpadoad
8890008
aanpadoxg - i£
uoysseadxy
suywIej eq
JezATeuy
11ed
sadAy uogjounyg aweu uojjouny
JazATeuy
sedAy auraN sweu

T e eTets sy - -

200

sed&y

pexisep

APPENDIX G

J93ATeuy Jo03vIedg €-5H eandyg

38717 J03Baede

JaziTeuy
Jo3saedg sedf3 peagsep

Axeutg

ToqQuAs Jojexedo

Jo3eaado Axeuiq

38117 J038vaedo

JezATeUy
J03830d0 ToquAs Jo03uvxedo

Axeup

sedA3 peaysep

Jo038aedo Lxeun

T T e T——— e -

-l
203ezedy [ToQuAs S
sUTWIe 8q X03wxedo

¢

AN U em . Wb as . e -

B N s il

J93ATeuy J038iadg Aasup 4 -H aanIty

sadAy
ZazATeU pueaedo
sadAy R paagsap
uotssaadxy
N
o
.I_ N
sxo3eIadp o3] Sreep
Jo038x
e szedy o3 a” edo pexysap
Yol ey 38TT Jozeredo - ovwaedo
: o
>
-
:
Ry
<
I
* .

APPENDIX G

JozATeuy Jojrexedg Areutg &$-H 0anItd

sad£3 pueaeado

sedA3 pusaado puey 3JoT
puey 3Jo1 JazATeuy paaysep
uoysseadxy
3811 | |
J038Iadp ToquAs
09 spusxadg J03830dQ J0q8a0do0
I8TT Yoz 8K 3877 J03uvaado dn jo
Jojexedo - 1001 sedA;
pexgsep
l J9zATeuy
sedAy pueiado | yorggeadxy |- sedA3 pueaedo
pexgsep

203

APPENDIX G

Jd0aJa9

J9zATeuy [Te) 8anpedolgd 9-H eandyg

88900N8

8133 aweaey
aTqQeTteAY
03 8J939weeyg

Yoy ey

8adky 81903 oweaed
et TeN3oe
eTqeITeA® J93ATeUY
uoyssaadxy
- | —
eINnpesodyg
3871 eanpedoad dn yoo1q

sanpedoad

204

APPENDIX G

JazATeuy TT8) UOTIOUNY (-5 eanFyg

sodAy
uotjoung

secks 8393 swesed
Pt Ten3oe
aTqeITBAR JazATeuy
uotyssaadxy
slajowetey | | r
T8N0V
pue Tewloyg
Yoyey 38TT uoEIdUNg

uog3oung
dn Joog

R X I T

sweu
uotjouny

205

sedAy
peaysap

e Samm—
-t A

VITA

VITA

Michael L. McCracken was born on 25 July 1952 in Glen
Ridge, New Jersey to Robert A. McCracken and Lilian B.
(Sarter) McCracken. He attended Sehome High School in
Bellingham, Washington and graduated cum laude in 1970.
He attended Western Washington State College in
Bellingham, Washington where he earned a Bachelors of Arts
degree in mathematics in June 1977. In July 1978 he
entered Officer's Training School at Medina Annex,
Lackland Air Force Base and was commissioned in October.
His first active duty Air Force assignment was with the
2nd Communications Squadron which later became Detachment
1 4602 CPUSS at Lowry AFB, Colorado. He then entered the
Air Force Institute of Technology in June 1982 as a
g;aduate student in computer science.

Captain McCracken was married to Kerri Lee Lobberegt
on 15 May 1976 in Port Gamble, Washington. They have a
daughter, April Lynn, born 25 February 1980 and a son,
Patrick Logan, born 12 December 1981.

Permanent address: 5191 N.E. Ponderosa Drive
Hansville, Washington 98340

€
—
PR N A S v eeen ot S

UICLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

‘s. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UICLASSIFIED
28. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
DOCRoVEY Rok Public QLULRASE
. DE SSIFICATION/ WNGRADING HEDULE
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
ATIT/GCS/MA/33D~4
G6s. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 78. NAME OF MONITORING ORGANIZATION
(If applicable) i
School of Fngineering AFIT/ENG :
6c. ADDRESS (City, State and ZIP Code) 70. ADDRESS (City, State and ZIP Cade) i
{
Alr Force Institute of Technology ‘
{
.Mright Patterson AFB, Ohio 45433 !
8s. NAME OF FUNDING/SPONSORING 8b, OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER i
ORGANIZATION (If applicable)
8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
11. TITLE (Inciude Security Classification)
See Box 19
12. PERSONAL AUTHORI(S)
Michael L. licCracken, B.A., Capt. USAF . ;
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT
MS Thesis FROM TO 1033 December S 214
16. SUPPLEMENTARY NOTATION Appreved :a’r‘)pz‘ﬂlc reloseer LAV LFR 13017
' L?zk%' EOVCLANER
I O <3 PR 7 3 N 3 I 3 ‘
COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if nbéexdiaryeaind diign tify by ‘Bloeh nushlieh
GROUP SUB. GA. Wright-Paneisca Al Ol 6133
02

19. ASSTRACT (Continue on reverse if necessary and identify by block number)

Title: ADAl - AN ADA SUBSET CCIPILER FOR THE AFIT SYNTAX
DIRECTED PROGRAMMING ENVIRONMENT

Thesis Advisor: Capt Patricia K. Lawlis

DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED X same as arr. (O otic usens O TCLASSITIZD

228. NAME OF AESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22¢. OFFICE SYMBOL
{Include Area Code)

Capt Patricia K. Lawlis (513) 255-3636 AFIT/ENC

0D FORM 1473, 83 APR SOITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

. s EL e 2 T MM w T
- g

UNCLASSIFIED 1

SECURITY CLASSIFICATION OF THIS PAGE

i e 3 -

Abstract

This docurent describes the effort involved in
moving the AdaQ compiler and interpreter developed by
Capt. Scott E. Ferguson as part of the AFIT syntax y
_ directed editor environment from a microcomputer to the
Y VAX 11/780.

; As part of this effort the compiler and
interpreter were expanded to accept a larger suset of
Ada. The compiler and interpreter work with an
abstract syntax representation of a computer program
produced by the syntax directed editor. This abstract
representation, which is guaranteed to be syntactically
correct, makes the compiler much easier to write and
understand. The compiler in a top-down compiler but no
backtracking is needed since the program is known to be
syntactically correct. The interpreter is able to use
the abstract representation to give the user an
interactive display of the program during execution.

Designs to allow overloading of names and
operators, and passing parameters to subprograms are
also presented.

— “ONCLA™ 1. “ED

b SECUMITY GLASSIT "ATION OF THIS PAQ

Palead

- ., .
. 8 . e T

i3 —

e

AD-A138 027

UNCLASSIFIED

ADA1: AN ADA SUBSET COMPILER FOR THE AFIT SYNTAX
DIRECTED PROGRAMMING ENV..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. M L MCCRACKEN
05 DEC 83 AFIT/GCS/MA/83D-4 F/G 9/2

2

NL

N E

Lo

lllll' 25 flis nm

=
m‘.

- au
[
N
o

= 2

MICROUCOPY RESOLUTION TEst CHART
N TR I T A M " ~

' INFORMATION

ERRATA

AD-A138 027

Page 162 js missing and is not available,

11 May 84 ;

